Open
Close

Установка и настройка kvm ubuntu 18.04. Резиновый гипервизор. Используем логические группы для виртуализации QEMU-KVM в Linux. Подключение к виртуальной машине

В этой вступительной статье я расскажу вкратце обо всех программных средствах, использованных в процессе разработки услуги. Более подробно о них будет рассказано в следующих статьях.

Почему ? Эта операционная система мне близка и понятна, так что при выборе дистрибутива мучений, терзаний и метаний испытано не было. Особых преимуществ перед Red Hat Enterprise Linux у него нет, но было принято решение работать со знакомой системой.

Если вы планируете самостоятельно развернуть инфраструктуру, используя аналогичные технологии, я бы посоветовал взять именно RHEL: благодаря хорошей документации и хорошо написаным прикладным программам это будет если не на порядок, то уж точно раза в два проще, а благодаря развитой системе сертификации без особого труда можно будет найти некоторое количество специалистов, на должном уровне знакомых в данной ОС.

Мы же, повторюсь, решили использовать Debian Squeeze с набором пакетов из Sid/Experimental и некоторыми пакетами, бэкпортированными и собранными с нашими патчами.
В планах имеется публикация репозитория с пакетами.

При выборе технологии виртуализации рассматривались два варианта - Xen и KVM.

Также во внимание принимался факт наличия огромного количества разработчиков, хостеров, комерческих решений именно на базе Xen - тем интереснее было провести в жизнь решение именно на базе KVM.

Основной же причиной, по которой мы решили использовать именно KVM, является необходимость запуска виртуальных машин с FreeBSD и, в перспективе, MS Windows.

Для управления виртуальными машинами оказалось чрезвычайно удобно использовать и продукты, использующие ее API: virsh , virt-manager , virt-install , пр.

Это система, которая хранит настройки виртуальных машин, управляет ими, ведёт по ним статистику, следит за тем, чтобы при старте у виртуальной машины поднимался интерфейс, подключает устройства к машине - в общем, выполняет кучу полезной работы и еще немножко сверх того.

Разумеется, решение не идеально. Из минусов следует назвать:

  • Абсолютно невменяемые сообщения об ошибках.
  • Невозможность изменять часть конфигурации виртуальной машины на лету, хотя QMP (QEMU Monitor Protocol) это вполне позволяет.
  • Иногда к libvirtd по непонятной причине невозможно подключиться - он перестаёт реагировать на внешние события.

Основной проблемой в реализации услуги в самом начале представлялось лимитирование ресурсов для виртуальных машин. В Xen эта проблема была решена при помощи внутреннего шедулера, распределяющего ресурсы между виртуальными машинами - и что самое прекрасное, была реализована возможность лимитировать и дисковые операции в том числе.

В KVM ничего такого не было до появления механизма распределения ресурсов ядра . Как обычно в Linux, доступ к этим функциям был реализован посредством специальной файловой системы cgroup , в которой при помощи обычных системных вызовов write() можно было добавить процесс в группу, назначить ему его вес в попугаях, указать ядро, на котором он будет работать, указать пропускную способность диска, которую этот процесс может использовать, или, опять же, назначить ему вес.

Профит в том, что всё это реализуется внутри ядра, и использовать это можно не только для сервера, но и для десктопа (что и использовали в известном «The ~200 Line Linux Kernel Patch That Does Wonders »). И на мой взгляд, это одно из самых значительных изменений в ветке 2.6, не считая любимого #12309 , а не запиливание очередной файловой системы. Ну, разве что, кроме POHMELFS (но чисто из-за названия).

Отношение к этой библиотеке-утилите у меня весьма неоднозначное.

С одной стороны это выглядит примерно так:

И ещё эту штуку чертовски сложно собрать из исходников и тем более в пакет: иногда мне кажется, что Linux From Scratch собрать с нуля несколько проще.

С другой стороны - очень мощная штука, которая позволяет создавать образы для виртуальных машин, модифицировать их, ужимать, ставить grub, модифицировать таблицу разделов, управлять конфигурационными файлами, переносить «железные» машины в виртуальную среду, переносить виртуальные машины с одного образа на другой, переносить виртуальные машины из образа на железо и, честно говоря, тут меня фантазия немного подводит. Ах, да: ещё можно запустить демон внутри виртуальной машины Linux и получить доступ к данным виртуальной машины вживую, и всё это делать на shell, python, perl, java, ocaml. Это краткий и далеко не полный список того, что можно сделать с .

Интересно, что большая часть кода в генерируется в момент сборки, равно как и документация к проекту. Очень широко используется ocaml, perl. Сам код пишется на C, который потом оборачивается в OCaml, и повторяющиеся куски кода генерируются сами. Работа с образами осуществляется путём запуска специального сервисного образа (supermin appliance), в который через канал внутрь него отправляются команды. Внутри этого образа содержится некоторый rescue набор утилит, таких как parted, mkfs и прочих полезных в хозяйстве системного администратора.

Я с недавнего времени его даже дома стал использовать, когда выковыривал из образа nandroid нужные мне данные. Но для этого требуется ядро с поддержкой yaffs.

Прочее

Ниже приведено ещё несколько интересных ссылок на описание использованных пограммных средств - почитать и поизучать самостоятельно, если интересно. Например,

KVM или Kernel Virtual Module - это модуль виртуализации для ядра Linux, который позволяет превратить ваш компьютер в гипервизор для управления виртуальными машинами. Этот модуль работает на уровне ядра и поддерживает такие технологии аппаратного ускорения, как Intel VT и AMD SVM.

Само по себе программное обеспечение KVM в пространстве пользователя ничего не виртуализирует. Вместо этого, оно использует файл /dev/kvm для настройки виртуальных адресных пространств для гостевой машины в ядре. Каждая гостевая машина будет иметь свою видеокарту, сетевую и звуковую карту, жесткий диск и другое оборудование.

Также у гостевой системы не будет доступа к компонентам реальной операционной системы. Виртуальная машина выполняется в полностью изолированном пространстве. Вы можете использовать kvm как в системе с графическим интерфейсом, так и на серверах. В этой статье мы рассмотрим как выполняется установка kvm Ubuntu 16.04

Перед тем как переходить к самой установке KVM нужно проверить поддерживает ли ваш процессор аппаратное ускорение виртуализации от Intel-VT или AMD-V. Для этого выполните такую команду:

egrep -c "(vmx|svm)" /proc/cpuinfo

Если в результате будет возвращено 0 - значит ваш процессор не поддерживает аппаратной виртуализации, если 1 или больше - то вы можете использовать KVM на своей машине.

Теперь мы можем перейти к установке KVM, набор программ можно получить прямо из официальных репозиториев:

sudo apt install qemu-kvm libvirt-bin bridge-utils virt-manager cpu-checker

Мы установили не только утилиту kvm, но и библиотеку libvirt, а также менеджер виртуальных машин. После того, как установка будет завершена вам необходимо добавить своего пользователя в группу libvirtd, потому что только root и пользователи этой группы могут использовать виртуальные машины KVM:

sudo gpasswd -a ПОЛЬЗОВАТЕЛЬ libvirtd

После выполнения этой команды выйдите из системы и войдите снова. Далее, давайте проверим все ли правильно было установлено. Для этого используйте команду kvm-ok:

INFO: /dev/kvm exists
KVM acceleration can be used

Если все было сделано правильно, то вы увидите такое же сообщение.

Использование KVM в Ubuntu 16.04

Вы справились с задачей установить kvm в Ubuntu, но вы еще не можете использовать эту среду виртуализации но ее нужно еще настроить. Далее, мы рассмотрим как выполняется настройка kvm Ubuntu. Сначала необходимо настроить сеть. Нам необходимо создать мост, с помощью которого виртуальная машина будет подключаться к сети компьютера.

Настройка моста в NetworkManager

Это можно сделать несколькими способами, например, можно использовать программу конфигурации сети NetworkManager.

Кликните по значку NetworkManager на панели, затем выберите изменить соединения , затем нажмите кнопку Добавить :

Затем выберите тип соединения Мост и нажмите Создать :

В открывшемся окне нажмите кнопку Добавить, чтобы связать наш мост с подключением к интернету:

Из списка выберите Ethernet и нажмите Создать :

В следующем окне выберите в поле устройство, сетевой интерфейс, с которым следует связать наш мост:

Теперь в списке сетевых подключений вы будете видеть ваш мост. Осталось перезагрузить сеть, чтобы полностью применить изменения, для этого выполните:

Ручная настройка моста

Сначала нужно установить набор утилит bridge-utils если вы еще этого не сделали:

sudo apt install bridge-utils

Затем, с помощью программы brctl мы можем создать нужный нам мост. Для этого используйте такие команды:

sudo brctl addbr bridge0
$ sudo ip addr show
$ sudo addif bridge0 eth0

Первая команда добавляет устройство моста br0, с помощью второй вам нужно определить какой сетевой интерфейс является основным подключением к внешней сети, в моем случае это eth0. И с помощью последней команды мы связываем мост br0 с eth0.

Теперь необходимо добавить несколько строк в настройки сети чтобы все поднималось автоматически после старта системы. Для этого откройте файл /etc/network/interfaces и добавьте туда такие строки:

sudo gedit /etc/network/interfaces

loopback
auto lo bridge0
iface lo inet loopback
iface bridge0 inet dhcp
bridge_ports eth0

Когда настройки будут добавлены перезагрузите сеть:

sudo systemctl restart networking

Теперь установка и настройка KVM полностью завершена и вы можете создать свою первую виртуальную машину. После этого вы можете посмотреть доступные мосты с помощью команды:

Создание виртуальных машин KVM

Настройка KVM Ubuntu завершена и теперь мы можем перейти к ее использованию. Сначала давайте просмотрим список уже существующих виртуальных машин:

virsh -c qemu:///system list

Он пуст. Создать виртуальную машину можно через терминал или в графическом интерфейсе. Для создания через терминал используйте команду virt-install. Сначала перейдем в папку libvirt:

cd /var/lib/libvirt/boot/

Для установки CentOS команда будет выглядеть вот так:

sudo virt-install \
--virt-type=kvm \
--name centos7 \
--ram 2048 \
--vcpus=2 \
--os-variant=rhel7 \
--hvm \
--cdrom=/var/lib/libvirt/boot/CentOS-7-x86_64-DVD-1511.iso \
--network=bridge=br0,model=virtio \
--graphics vnc \
--disk path=/var/lib/libvirt/images/centos7.qcow2,size=40,bus=virtio,format=qcow2

Разберем подробнее что означают параметры этой команды:

  • virt-type - тип виртуализации, в нашем случае kvm;
  • name - имя новой машины;
  • ram - количество памяти в мегабайтах;
  • vcpus - количество ядер процессора;
  • os-variant - тип операционной системы;
  • cdrom - установочный образ системы;
  • network-bridge - сетевой мост, который мы настроили ранее;
  • graphics - способ получения доступа к графическому интерфейсу;
  • diskpath - адрес нового жесткого диска для этой виртуальной машины;

После завершения установки виртуальной машины вы можете узнать параметры подключения по VNC с помощью команды:

sudo virsh vncdisplay centos7

Теперь вы можете ввести полученные данные в вашем клиенте VNC и подключится к виртуальной машине даже удаленно. Для Debian команда будет немного отличаться, но все выглядит похожим образом:

Переходим в папку для образов:

cd /var/lib/libvirt/boot/

Можно скачать установочный образ из интернета если это необходимо:

sudo wget https://mirrors.kernel.org/debian-cd/current/amd64/iso-dvd/debian-8.5.0-amd64-DVD-1.iso

Затем создадим виртуальную машину:

sudo virt-install \
--virt-type=kvm \
--name=debina8 \
--ram=2048 \
--vcpus=2 \
--os-variant=debian8 \
--hvm \
--cdrom=/var/lib/libvirt/boot/debian-8.5.0-amd64-DVD-1.iso \
--network=bridge=bridge0,model=virtio \
--graphics vnc \
--disk path=/var/lib/libvirt/images/debian8.qcow2,size=40,bus=virtio,format=qcow2

Теперь снова посмотрим список доступных машин:

virsh -c qemu:///system list

Для запуска виртуальной машины можно использовать команду:

sudo virsh start имя_машины

Для остановки:

sudo virsh shutdown имя_машины

Для перевода в режим сна:

sudo virsh suspend имя_машины

Для перезагрузки:

sudo virsh reboot имя_машины

sudo virsh reset имя_машины

Для полного удаления виртуальной машины:

sudo virsh destroy имя_машины

Создание виртуальных машин в GUI\

Если у вас есть доступ к графическому интерфейсу то нет никакой необходимости использовать терминал, вы можете применить полноценный графический интерфейс менеджера виртуальных машин Virtual Manager. Программу можно запустить из главного меню:

Для создания новой машины кликните по иконке со значком монитора. Дальше вам будет необходимо выбрать образ ISO вашей системы. Также можно использовать реальный CD/DVD привод:

На следующем экране выберите количество памяти, которая будет доступна для виртуальной машины, а также количество ядер процессора:

На этом экране вам нужно выбрать размер жесткого диска, который будет доступен в вашей машине:

На последнем шаге мастера вам предстоит проверить правильность настроек машины, а также ввести ее имя. Также нужно указать сетевой мост, через который машина будет подключаться к сети:

После этого машина будет готова к использованию и появится в списке. Вы можете запустить ее с помощью зеленого треугольника на панели инструментов менеджера.

Выводы

В этой статье мы рассмотрели как выполняется установка KVM Ubuntu 16.04, разобрали как полностью подготовить эту среду к работе, а также как создать виртуальные машины и использовать их. Если у вас остались вопросы, спрашивайте в комментариях!

На завершение лекция от яндекса о том что такое виртуализация в Linux:

Ранее я уже писал об установке Qemu-KVM в Debian . Но, на мой взгляд, информация получилась неполной. Плюс я не учёл некоторые нюансы. Потому предлагаю вашему вниманию обновлённую статью по установке виртуальной машины Qemu-KVM. Старую статью, естественно, удалю.

Думаю, объяснять что такое виртуальная машина , не стоит. Вы наверняка это знаете (раз читаете эту статью). Если нет - . Мы же остановимся непосредсвенно на сабже. Qemu-KVM - это проект по объединению двух замечтальнейшийх (на мой взгляд) технологий полной виртуализации. Qemu - это своего рода "эмулятор компьютера", который поддерживает великое множество аппаратных архитектур. В нём можно запустить практически любую ОС для любого устройства (к примеру я запускал старые версии Mac OS X , который для PowerPC ). Недостатком Qemu является его медлительность вследствии отсутствия аппратного ускорения. И тут на помощь приходит другой проект - KVM . Или Kernel Virtual Machine. KVM - это технология ядра Linux, которая позволяет обеспечить аппаратное ускорение при полной виртуализации. Недостатком KVM является поддержка только архитектуры x86

Почему Qemu-KVM? Для Linux это самый рекомендуемый проект виртуализации. Он работает быстрее, чем VirtualBox и VMware Player (по моим тестам), KVM - это родная для Линукса технология. Плюс, если вы обладатель хорошего игрового компьютера с двумя видеокартами, вы можете установить в Qemu-KVM Windows , пробросить в неё одну из видеокарт, и забыть о перезагрузке в другую ОС. Захотели поиграть - запустили виртуалку с виндой и играете. Производительность будет 95% от производительности установленной на "железо" винды. Но это просто шикарно, на мой взгляд. Об этом я напишу отдельную статью. Будет интересно:)

А теперь опишу план наших действий. Во первых, установку я буду проводить на примере Debian 8.2 GNOME 64 bit , хотя, особых различий в других графических окружениях не будет. Во-вторых - я буду описывать работу с KVM только в графическом режиме (мы ведь не на сервер будет его ставить). Поэтому никаких терминалов, скриптов и так далее, как обычно поступают в случае серверной виртуализации. В третьих - советую вам дополнительно прочитать документацию к Qemu и KVM (ссылки дам в конце статьи). Вам это очень пригодится, если вы хотите по-максимуму использовать весь потенциал этой связки. Ну чтож, план наших действий ясен. Теперь этапы действий:

  • установка qemu-kvm;
  • установка графического менеджера и дополнительных утилит;
  • настройка сетевого моста;
  • создание хранилища для виртуальных машин;
  • установка гостевой системы.
Для начала проверим, поддерживает ли ваш компьютер аппаратную виртуализацию. Для этого в терминале выполняем команду:

egrep "(vmx|svm)" /proc/cpuinfo

В выводе команды должны присутствовать либо vmx , либо svm . Если их нет - проверьте включена ли виртуализация в BIOS (ищите пункты Intel VT-i или аналогичный для AMD ). Если ничего нет - значит не повезло.

Устанавливаем необходимые компоненты:

sudo apt install qemu-kvm bridge-utils libvirt-bin virt-manager

Добавляем себя в группу libvirt:

sudo adduser $USER libvirt

Теперь настроим сеть. Для того чтобы все виртауальные машины могли выходить в сеть и связываться друг с другом, нужно создать сетевой мост и виртаульные сетевые карты для каждой виртуалки (tap-устройства ). Так как виртуальные машины мы будем устанавливать из графического интерфейса, то создавать вручную tap"ы не нужно. Virt Manager сделает это за нас при каждом запуске. Нам нужно только настроить мост. Для начала включим маршрутизацию в ядре:

sudo nano /etc/sysctl.conf

Ищем строку net.ipv4_forward=0 и меняем её значение на 1 . Сохраняем и:

sudo sysctl -p

Далее я буду предполагать следующее: 1) на вашем компьютере есть одна сетевая карта, получающая ip-адрес от роутера. 2) вы выходите в интернет через 3G-модем, и сетевая карта у вас свободна. Этот вариант предполагает побольше ручной работы, но он проверен неоднократно (у самого так на одной из машин). Итак, открываем файл interfaces:

sudo nano /etc/network/interfaces

Его содержимое по умолчанию такое:



auto lo
iface lo inet loopback

Меняем его содержимое. Для первого варианта:

source /etc/network/interfaces.d/*

# The loopback network interface
auto lo
iface lo inet loopback

auto eth0
iface eth0 inet manual

auto br0
iface br0 inet static
address 192.168.0.2
gateway 192.168.0.1
netmask 255.255.255.0
network 192.168.0.0
broadcast 192.168.0.255
bridge_ports eth0
bridge_stp off
bridge_maxwait 0
bridge_fd 0

Для второго варианта:

source /etc/network/interfaces.d/*

# The loopback network interface
auto lo
iface lo inet loopback

auto ppp0
iface ppp0 inet wvdial

auto eth0
iface eth0 inet manual

auto br0
iface br0 inet static
address 192.168.0.2
gateway 192.168.0.1
netmask 255.255.255.0
network 192.168.0.0
broadcast 192.168.0.255
bridge_ports eth0
bridge_stp off
bridge_maxwait 0
bridge_fd 0
up route del default br0

Примечание: если вам не нужно автоматическое подключение Интернета через модем после старта системы, уберите из конфига строки auto ppp0 и
iface ppp0 inet wvdial . В противном случае, убедитесь что при запуске системы, модем вставлен в USB-порт.

Сохраняем. Теперь для варианта с модемом, нужно установить программу дозвона wvdial :

sudo apt install wvdial

Правим конфиг (обратите внимание: в качестве примера используется 3G-модем Beeline . Примеры конфигов для других модемов вы без труда найдёте в интернете):

sudo nano /etc/wvdial.conf


Init1 = ATZ
Init2 = ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0
Init3 = AT+CGDCONT=1,"IP","home.beeline.ru"
Stupid Mode = 1
ISDN = 0
Modem Type = USB Modem
New PPPD = yes
Phone = *99#
Modem = /dev/ttyACM0
Username = beeline
Password = beeline
Baud = 9600
Country = Russia
Auto Reconnect = on
Auto DNS = off
Idle Seconds = 0

Сохраняем. Теперь модем будет включаться сразу после загрузки системы. Строка up route del default br0 удаляет маршрут по умолчанию через мост. Если этого не сделать, вы не сможете соединиться с Интернетом, так как трафик будет идти по мосту, а не через 3G-модем.

Последним этапом нам нужно сказать фаерволлу , чтобы он пропускал в сеть трафик от наших виртуалок и обратно. Для этого можно пойти двумя путями: написать скрипт с несколькими правилами для iptables , который будет запускаться вместе с системой, или ввести эти правила вручную и сохранить их. Я воспользуюсь первым вариантом. Для второго вам нужно будет установить пакет iptables-persistent и просто поочерёдно вводить правила (с использованием sudo). Итак. создаём скрипт (в любом текстовом редакторе). Вставляем туда следующее содержимое:

#!/bin/sh

# Определяем выходной интерфейс для которого будет применяться замена адресов (NAT)
iptables -v -t nat -A POSTROUTING -o ppp0 -j MASQUERADE

# Пересылаем все пакеты, пришедшие на модем из глобальной сети (0.0.0.0/0) в локальную сеть (192.168.0.0/24)
iptables -v -A FORWARD -i ppp0 -o br0 -s 0.0.0.0/0 -d 192.168.0.0/24 -j ACCEPT

# Пересылаем все пакеты, пришедшие из локальной сети (192.168.0.0/24) в глобальную (0.0.0.0/0)
iptables -v -A FORWARD -i br0 -o ppp0 -s 192.168.0.0/24 -d 0.0.0.0/0 -j ACCEPT

Сохраняем его как gateway.sh и даём права на выполнение (либо в свойствах файла, либо в терминале командой chmod +x gateway.sh ). Теперь вы можете либо запускать его вручную, после того как загрузилась система, либо добавить в автозагрузку. Для этого переместите скрипт в ~/.config/autostart (в файловом менеджере включите показ скрытых файлов, и вы увидите каталог .config в домашней директории).

Теперь всё готово для установки виртуальной машины. Из меню приложений запускаем Virt Manager (менеджер виртуальных машин):

Кликаем правой кнопкой на строке localhost и выбираем Детали . Переходим на вкладку Хранилище . Нам нужно указать каталог (или раздел диска/диск) для хранения виртуальных машин.

В левом нижнем углу жмём на плюсик (Добавить пул ), указывам тип хранилища и путь к нему.

На вкладке Сетевые интерфейсы , можете проверить, всё ли работает.

Теперь нажимаем Файл - New virtual machine . Указываем путь к образу диска, тип виртуальной машины. Далее указываем количество оперативной памяти для неё и количество ядер процессора. Далее указываем наше хранилище и нажимаем Новый том . Указываем название, тип оставляем qcow2 , и размер. Это будет виртуальный жёсткий диск. Если планируете устанавливать систему с графической оболочкой и кучей программ, дайте места побольше (гигов 50). На последней вкладке ставим галочку на Изменить настройки перед запуском , проверяем что в качестве сетевого устройства выбран наш мост, пишем любое название для виртуалки и жмём Завершить . Перед вами откроется окно параметров этой виртуальной машины.





Переходим на вкладку Процессор , и ставим галочку на Скопировать настройки процессора хост-системы .

Далее на вкладку Сеть (следующая), и также указываем vitio . На вкладке Дисплей укажите Spice , а на вкладке Видео - QXL . Обычно эта связка обеспечивает максимальную производительность отрисовки графики, но, если хотите, можете поэксперементировать. Учтите, что для гостевых систем Windows, требуется отдельная установка QXL-драйвера (в самой Windows).


Теперь когда всё готово, в левом верхнем углу жмём Начать установку . И ставим систему как обычно, за одним исключением: как только установщик начнёт автоматически настраивать сеть, нажмите Отмена , и выберите Настроить сеть вручную . Укажите для виртуалки желаемый IP-адрес (в нашем случае 192.168.0.3 ), маску подсети (255.255.255.0 ), шлюз (шлюзом будет адрес хоста, тоесть 192.168.0.2 ) и DNS-сервер (здесь просто укажите Гугловский 8.8.8.8 ). И всё. Дальше ничего делать не нужно. Ставьте систему и настраивайте. В общем-то, всё. Описанные действия - это способ заменить, скажем, VirtualBox на более лучшую альтернативу. Прочитав документацию, вы поймёте, насколько широки возможности Qemu-KVM. Я намеренно не стал описывать здесь дополнительные консольные параметры и методы запуска виртуальных машин через терминал, так как это далеко не всегда нужно на домашней машине. Об этом я напишу отдельную статью, по настройке домашнего многофункционального сервера (который также сможет выступать в качестве сервера виртуальных машин). Для тех, кто по каким-то причинам не понял написанное, или остались непонятные моменты - предлагаю посмотреть ролик, в котором я уже не опишу, а покажу, как всё это добро устанавливать и настраивать. Если у вас есть предложения или дополнения к статье - пишите в комментариях.

Выпуск WordPress 5.3 улучшает и расширяет представленный в WordPress 5.0 редактор блоков новым блоком, более интуитивным взаимодействием и улучшенной доступностью. Новые функции в редакторе […]

После девяти месяцев разработки доступен мультимедиа-пакет FFmpeg 4.2, включающий набор приложений и коллекцию библиотек для операций над различными мультимедиа-форматами (запись, преобразование и […]

  • Новые функции в Linux Mint 19.2 Cinnamon

    Linux Mint 19.2 является выпуском с долгосрочной поддержкой, который будет поддерживаться до 2023 года. Он поставляется с обновленным программным обеспечением и содержит доработки и множество новых […]

  • Вышел дистрибутив Linux Mint 19.2

    Представлен релиз дистрибутива Linux Mint 19.2, второго обновления ветки Linux Mint 19.x, формируемой на пакетной базе Ubuntu 18.04 LTS и поддерживаемой до 2023 года. Дистрибутив полностью совместим […]

  • Доступны новые сервисные релизы BIND, которые содержат исправления ошибок и улучшения функций. Новые выпуски могут быть скачано со страницы загрузок на сайте разработчика: […]

    Exim – агент передачи сообщений (MTA), разработанный в Кембриджском университете для использования в системах Unix, подключенных к Интернету. Он находится в свободном доступе в соответствии с […]

    После почти двух лет разработки представлен релиз ZFS on Linux 0.8.0, реализации файловой системы ZFS, оформленной в виде модуля для ядра Linux. Работа модуля проверена с ядрами Linux c 2.6.32 по […]

  • В WordPress 5.1.1 устранена уязвимость, позволяющая получить контроль над сайтом
  • Комитет IETF (Internet Engineering Task Force), занимающийся развитием протоколов и архитектуры интернета, завершил формирование RFC для протокола ACME (Automatic Certificate Management Environment) […]

    Некоммерческий удостоверяющий центр Let’s Encrypt, контролируемый сообществом и предоставляющий сертификаты безвозмездно всем желающим, подвёл итоги прошедшего года и рассказал о планах на 2019 год. […]

  • Вышла новая версия Libreoffice – Libreoffice 6.2
  • Проверка поддержки гипервизора

    Проверяем, что сервер поддерживает технологии виртуализации:

    cat /proc/cpuinfo | egrep "(vmx|svm)"

    В ответ должны получить что-то наподобие:

    flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 cx16 xtpr pdcm pcid dca sse4_1 sse4_2 popcnt aes lahf_lm epb tpr_shadow vnmi flexpriority ept vpid dtherm ida arat

    В противном случае, заходим в БИОС, находим опцию для включения технологии виртуализации (имеет разные названия, например, Intel Virtualization Technology или Virtualization) и включаем ее — задаем значение Enable .

    Также проверить совместимость можно командой:

    * если команда вернет ошибку «kvm-ok command not found» , установите соответствующий пакет: apt-get install cpu-checker .

    Если видим:

    INFO: /dev/kvm exists
    KVM acceleration can be used

    значит поддержка со стороны аппаратной части есть.

    Подготовка сервера

    Для нашего удобства, создадим каталог, в котором будем хранить данные для KVM:

    mkdir -p /kvm/{vhdd,iso}

    * будет создано два каталога: /kvm/vhdd (для виртуальных жестких дисков) и /kvm/iso (для iso-образов).

    Настроим время:

    \cp /usr/share/zoneinfo/Europe/Moscow /etc/localtime

    * данная команда задает зону в соответствии с московским временем.

    ntpdate ru.pool.ntp.org

    * выполняем синхронизацию с сервером времени.

    Установка и запуск

    Устанавливаем KVM и необходимые утилиты управления.

    а) Ubuntu до версии 18.10

    apt-get install qemu-kvm libvirt-bin virtinst libosinfo-bin

    б) Ubuntu после 18.10:

    apt-get install qemu-kvm libvirt-daemon-system libvirt-bin virtinst libosinfo-bin

    * где qemu-kvm — гипервизор; libvirt-bin — библиотека управления гипервизором; virtinst — утилита управления виртуальными машинами; libosinfo-bin — утилита для просмотра списка вариантов операционных систем, которые могут быть в качестве гостевых.

    Настроим автоматический запуск сервиса:

    systemctl enable libvirtd

    Запустим libvirtd:

    systemctl start libvirtd

    Настройка сети

    Виртуальные машины могут работать за NAT (в качестве которого выступает сервер KVM) или получать IP-адреса из локальной сети — для этого необходимо настроить сетевой мост. Мы настроим последний.

    Используя удаленное подключение, внимательно проверяйте настройки. В случае ошибки соединение будет прервано.

    Устанавливаем bridge-utils:

    apt-get install bridge-utils

    а) настройка сети в старых версиях Ubuntu (/etc/network/interfaces).

    Открываем конфигурационный файл для настройки сетевых интерфейсов:

    vi /etc/network/interfaces

    И приведем его к виду:

    #iface eth0 inet static
    # address 192.168.1.24
    # netmask 255.255.255.0
    # gateway 192.168.1.1
    # dns-nameservers 192.168.1.1 192.168.1.2

    Auto br0
    iface br0 inet static
    address 192.168.1.24
    netmask 255.255.255.0
    gateway 192.168.1.1
    dns-nameservers 192.168.1.1 192.168.1.2
    bridge_ports eth0
    bridge_fd 9
    bridge_hello 2
    bridge_maxage 12
    bridge_stp off

    * где все, что закомментировано — старые настройки моей сети; br0 — название интерфейса создаваемого моста; eth0 — существующий сетевой интерфейс, через который будет работать мост.

    Перезапускаем службу сети:

    systemctl restart networking

    б) настройка сети в новых версиях Ubuntu (netplan).

    vi /etc/netplan/01-netcfg.yaml

    * в зависимости от версии системы, конфигурационной файл yaml может иметь другое название.

    Приводим его к виду:

    network:
    version: 2
    renderer: networkd
    ethernets:
    eth0:
    dhcp4: false
    dhcp6: false
    wakeonlan: true

    Bridges:
    br0:
    macaddress: 2c:6d:45:c3:55:a7
    interfaces:
    - eth0
    addresses:
    - 192.168.1.24/24
    gateway4: 192.168.1.1
    mtu: 1500
    nameservers:
    addresses:
    - 192.168.1.1
    - 192.168.1.2
    parameters:
    stp: true
    forward-delay: 4
    dhcp4: false
    dhcp6: false

    * в данном примере мы создаем виртуальный бридж-интерфейс br0 ; в качестве физического интерфейса используем eth0 .

    Применяем сетевые настройки:

    Настаиваем перенаправления сетевого трафика (чтобы виртуальные машины с сетевым интерфейсом NAT могли выходить в интернет):

    vi /etc/sysctl.d/99-sysctl.conf

    Добавляем строку:

    net.ipv4.ip_forward=1

    Применяем настройки:

    sysctl -p /etc/sysctl.d/99-sysctl.conf

    Создание виртуальной машины

    Для создания первой виртуальной машины вводим следующую команду:

    virt-install -n VM1 \
    --autostart \
    --noautoconsole \
    --network=bridge:br0 \
    --ram 2048 --arch=x86_64 \
    --vcpus=2 --cpu host --check-cpu \
    --disk path=/kvm/vhdd/VM1-disk1.img,size=16 \
    --cdrom /kvm/iso/ubuntu-18.04.3-server-amd64.iso \
    --graphics vnc,listen=0.0.0.0,password=vnc_password \
    --os-type linux --os-variant=ubuntu18.04 --boot cdrom,hd,menu=on

    • VM1 — имя создаваемой машины;
    • autostart — разрешить виртуальной машине автоматически запускаться вместе с сервером KVM;
    • noautoconsole — не подключается к консоли виртуальной машины;
    • network — тип сети. В данном примере мы создаем виртуальную машину с интерфейсом типа «сетевой мост». Для создания внутреннего интерфейса с типом NAT вводим --network=default,model=virtio ;
    • ram — объем оперативной памяти;
    • vcpus — количество виртуальных процессоров;
    • disk — виртуальный диск: path — путь до диска; size — его объем;
    • cdrom — виртуальный привод с образом системы;
    • graphics — параметры подключения к виртуальной машины с помощью графической консоли (в данном примере используем vnc); listen — на какой адресе принимает запросы vnc (в нашем примере на всех); password — пароль для подключения при помощи vnc;
    • os-variant — гостевая операционная система (весь список мы получали командой osinfo-query os , в данном примере устанавливаем Ubuntu 18.04).

    Подключение к виртуальной машине

    На компьютер, с которого планируем работать с виртуальными машинами, скачиваем VNC-клиент, например, TightVNC и устанавливаем его.

    На сервере вводим:

    virsh vncdisplay VM1

    команда покажет, на каком порту работает VNC для машины VM1. У меня было:

    * :1 значит, что нужно к 5900 прибавить 1 — 5900 + 1 = 5901.

    Запускаем TightVNC Viewer, который мы установили и вводим данные для подключения:

    Кликаем по Connect . На запрос пароля вводим тот, что указали при создании ВМ, (vnc_password ). Мы подключимся к виртуальной машине удаленной консолью.

    Если мы не помним пароль, открываем настройку виртуальной машины командой:

    И находим строку:



    * в данном примере для доступа к виртуальной машине используется пароль 12345678 .

    Управление виртуальной машиной из командной строки

    Примеры команд, которые могут пригодиться при работе с виртуальными машинами.

    1. Получить список созданных машин:

    virsh list --all

    2. Включить виртуальную машину:

    virsh start VMname

    * где VMname — имя созданной машины.

    3. Выключить виртуальную машину:

    ubuntu-vm-builder — пакет, разработанный компанией Canonical для упрощения создания новых виртуальных машин.

    Для его установки вводим:

    apt-get install ubuntu-vm-builder