Open
Close

Можно ли клонировать динозавров? Воскрешение динозавров Клонирование динозавров реально

Ребята, мы вкладываем душу в сайт. Cпасибо за то,
что открываете эту красоту. Спасибо за вдохновение и мурашки.
Присоединяйтесь к нам в Facebook и ВКонтакте

Клонирование животных становится привычным делом. Постепенно ученые берутся за вымершие виды, мечтают вернуть к жизни мамонта и неандертальца. Но как насчет динозавров?

Фильм «Парк юрского периода» совершил революцию в мире науки: появились международные проекты для изучения останков и ДНК древних ящеров, в 4 раза выросло число палеонтологов. Всеми двигал интерес и желание дать окончательный ответ на вопрос о том, возможно ли клонировать тех, кто жил на Земле за 60 млн лет до появления человека.

С начала 2000-х годов мнения ученых разнятся. Скептики простились с детской мечтой: даже владея подобной технологией, люди вряд ли воспользуются ею для воссоздания динозавра, которому нет места в современном мире. Но есть и те, кто мыслит иначе.

сайт вкратце объясняет, как ученые надеются оживить древних ископаемых в ближайшем будущем и о каких результатах можно говорить уже сегодня. Посвящается всем, кто мечтал увидеть живого тираннозавра, - не отчаивайтесь, надежда еще есть.

2. Ищем неизвестные формы жизни на нашей планете, чтобы изучать механизмы и функции генов, создавать новые виды и воскрешать старые

С тех пор, как палеонтолог университета Северной Каролины Мэри Швейцер (Mary Schweitzer) обнаружила в окаменелостях динозавров их мягкие ткан и, перед современной наукой о древних существах встал вопрос: сможем ли мы когда-нибудь найти подлинную ДНК динозавров ?

И если да, то не удастся ли нам с ее помощью воссоздать этих удивительных животных?

Дать однозначные ответы на эти вопросы не так-то просто, но доктор Швейцер все же согласилась помочь нам понять, что мы знаем сегодня о генетическом материале динозавров и на что можем рассчитывать в будущем.

Можем ли мы получить ДНК из окаменелостей?

Этот вопрос следует понимать как "можем ли мы получить динозавровую ДНК"? Кости состоят из минерала гидроксиапатита, который имеет настолько высокое сродство с ДНК и многими белками, что активно используется сегодня в лабораториях для очистки их молекул. Кости динозавров 65 млн лет пролежали в земле, и достаточно велика вероятность, что если начать активно искать в них молекулы ДНК, то вполне можно и найти.

Просто потому, что некоторые биомолекулы могут приклеиться к этому минералу, как к липучке. Проблема, однако, будет заключаться не столько в том, чтобы просто найти ДНК в костях динозавров, сколько в том, чтобы доказать, что эти молекулы принадлежат именно динозаврам, а не появились из каких-то других возможных источников.

Сможем ли мы когда-нибудь восстановить подлинную ДНК из кости динозавра? Научный ответ - да. Все возможно, пока не доказано обратное. Способны ли мы сейчас доказать невозможность извлечения динозавровой ДНК? Нет, не способны. Есть ли у нас уже подлинная молекула с генами динозавра? Нет, этот вопрос пока остается открытым.

Как долго ДНК может сохраняться в геологической летописи и как доказать, что она принадлежит именно динозавру, а не попала в образец уже в лаборатории вместе с каким-нибудь загрязнителем?

Многие ученые считают, что у ДНК довольно короткий срок годности. По их мнению, эти молекулы вряд ли смогут сохраниться дольше, чем миллион лет, и уж конечно, не более пяти-шести миллионов лет в самом лучшем случае. Такая позиция лишает нас надежды увидеть ДНК существ, живших свыше 65 млн лет назад. Но откуда взялись эти цифры?

Занимавшиеся этой проблемой ученые помещали молекулы ДНК в горячую кислоту и засекали время, которое необходимо для их распада. Высокие температура и кислотность использовались в качестве "заменителей" длительных временных промежутков. Согласно выводам исследователей, ДНК распадается довольно быстро.

Результаты одной из таких работ, сопоставлявшей количество молекул ДНК, успешно извлекаемых из образцов разного возраста - от нескольких сотен до 8000 лет - показали, что с возрастом количество извлекаемых молекул снижается.

Ученые даже смогли смоделировать "скорость распада" и предсказали, хотя и не проверили это утверждение, что обнаружить ДНК в кости мелового возраста крайне маловероятно. Как ни странно, но это же исследование показало, что возраст сам по себе не может объяснить распад или сохранение ДНК.

С другой стороны, у нас есть четыре независимых линии доказательств того, что молекулы, химически схожие с ДНК, могут локализовываться в клетках наших собственных костей, и это хорошо согласуется с тем, чтобы ожидать таких находок в костях динозавров.

Итак, если мы выделим ДНК из костей, принадлежащих динозаврам, как нам убедиться, что это не результат позднейшего загрязнения?

Идея о том, что ДНК может сохраняться так долго, действительно имеет довольно мало шансов на успех, поэтому любое заявление о находке или восстановлении настоящей динозавровой ДНК должно соответствовать самым строгим критериям.

Мы предлагаем такие:

1. Последовательность ДНК, выделенная из кости, должна соответствовать той, что можно было бы ожидать, основываясь на других данных. Сегодня известно более 300 признаков, связывающих динозавров с птицами, и убедительно доказывающих, что птицы произошли от динозавров-теропод.

Поэтому последовательности ДНК динозавров, полученные из их костей, должны быть больше похожи на генетический материал птиц, чем на ДНК крокодилов, при этом отличаясь и от тех, и от других. Они также будут отличаться и от любых ДНК, происходящих из современных источников.

2. Если динозавровые ДНК будут настоящими, то они, очевидно, окажутся сильно фрагментированы, и их будет сложно анализировать нашими нынешними методами, разработанными для секвенирования здоровой и счастливой современной ДНК.

Если "ДНК тирекса" окажется состоящей из длинных цепочек, относительно легко поддающихся расшифровке, то скорее всего, мы имеем дело с загрязнением, а не подлинной ДНК динозавра.

3. Молекула ДНК считается более хрупкой по сравнению с другими химическим соединениями. Поэтому если в материале присутствуют аутентичные ДНК, то там должны быть и другие, более прочные молекулы, например, коллагена.

При этом связь с птицами и крокодилами должна прослеживаться и у молекул этих более устойчивых соединений. Кроме того, в ископаемом материале могут обнаружиться, например, липиды, составляющие клеточные мембраны. Липиды более устойчивы, чем в среднем белки или те же молекулы ДНК.

4. Если белки и ДНК успешно сохранились с мезозойских времен, их связь с динозаврами должна подтверждаться не только секвенированием, но и другими методами научного исследования. Например, связывание белков со специфическими антителами докажет, что это действительно белки из мягких тканей, а не загрязнение из внешних горных пород.

В наших исследованиях мы смогли успешно локализовать вещество, химически подобное ДНК, внутри клеток кости T. Rex, используя как методы, специфические для ДНК, так и антитела к белкам, ассоциированным с ДНК позвоночных.

5. Наконец, и это, вероятно, самое главное - для всех этапов любого исследования следует применять надлежащий контроль. Наряду с образцами, из которых мы надеемся выделить ДНК, необходимо исследовать и вмещающие породы, а также все химические соединения, используемые в лаборатории. Если и в них также обнаружатся последовательности, представляющие для нас интерес, то скорее всего, это просто загрязняющие вещества.

Так сможем ли мы когда-нибудь клонировать динозавра?

В каком-то смысле. Клонирование, как его обычно проводят в лаборатории, представляет собой вставку известного фрагмента ДНК в бактериальные плазмиды.

Этот фрагмент реплицируется всякий раз, когда делится клетка, что приводит к появлению многих копий идентичных ДНК.

Палеонтолог университета Северной Каролины Мэри Швейцер

Другой метод клонирования предполагает помещение целого комплекта ДНК в жизнеспособные клетки, из которых заранее удален их собственный ядерный материал. Затем такая клетка помещается в организм хозяина, и донорская ДНК начинает управлять формированием и развитием потомства, полностью идентичного донору.

Знаменитая овечка Долли является примером использования как раз данного метода клонирования. Когда люди говорят о "клонировании динозавра", они обычно имеют в виду что-то вроде этого. Однако этот процесс невероятно сложен, и, не смотря на ненаучный характер такого предположения, вероятность того, что мы когда-нибудь сможем преодолеть все нестыковки между фрагментами ДНК из костей динозавров и произвести жизнеспособное потомство, настолько мала, что я отношу ее к разряду "не представляется возможным".

Но только потому, что вероятность создания настоящего Парка юрского периода мизерна, нельзя говорить, будто невозможно восстановить саму исходную ДНК динозавра или другие молекулы из древних останков. На самом деле эти древние молекулы могли бы многое нам рассказать. Ведь все эволюционные изменения должны сперва произойти в генах и отразиться на молекулах ДНК.

Мы также можем многое узнать о долговечности молекул в естественных условиях непосредственно, а не благодаря лабораторным экспериментам. И, наконец, восстановление молекул из образцов ископаемых существ, в том числе динозавров, дает нам важную информацию о происхождении и распространении различных эволюционных инноваций, например, перьев.

Нам предстоит еще многому научиться в молекулярном анализе окаменелостей, и мы должны действовать с максимальной осторожностью, никогда не переоценивая данные, которые получаем. Но мы можем извлечь из молекул, сохранившихся в окаменелостях, столько всего интересного, что это безусловно заслуживает наших усилий.

Мечта о возрождении динозавров, мамонтов и других вымерших животных постоянно всплывает в прессе, хотя подавляющее большинство ученых относятся к этой идее весьма скептически. Смогут ли люди когда-нибудь погулять по парку хоть какого-нибудь периода?

Александр Чубенко

Начнем с самых плохих новостей: парк юрского периода — чистая фантастика. Ни в замурованных в янтаре комарах, ни тем более в окаменевших останках динозавров не осталось даже следов ДНК. Скорее всего, еще до начала съемок первого фильма эпопеи в этом не сомневался и ее научный консультант — палеонтолог Джек Хорнер. Хотя (наверняка не без влияния работы со Спилбергом) он разработал проект создания существа, похожего на динозаврика, но об этом потом.

А недавно на мечте о динозаврах окончательно поставили крест. Датские и австралийские палеогенетики проанализировали ДНК из костей полутора с лишним сотен вымерших новозеландских гигантских птиц моа возрастом от 600 до 8000 лет и рассчитали, что (во всяком случае в условиях хранения костей в земле, а после — в музеях) период полураспада ДНК составляет 521 год. Вывод однозначен: даже в вечной мерзлоте через полтора миллиона лет нити ископаемой ДНК станут слишком короткими для получения информации о последовательностях ее нуклеотидов. Останки последнего динозавра раз в 40 старше — мечтатели могут расслабиться и помечтать о чем-нибудь более приземленном. Например, о мамонтах.


Мамонты: два подхода к мечте

Японский генетик Акира Иритани, один из руководителей «Общества создания мамонтов» (Mammoth Creation Society), в середине 1990-х еще надеялся найти в тушах сибирских мамонтов жизнеспособные яйцеклетку и сперматозоид, а результат их слияния подсадить в матку слонихи. Осознав нереальность такой надежды, этот крепкий старик (сейчас ему чуть за 80) не оставил попыток добыть хотя бы ядро соматической (желательно стволовой) клетки, чтобы получить мамонтенка классическим «методом Долли» — переносом этого ядра в слоновью яйцеклетку.

Похоже, что эта пушка не выстрелит по десяти (а может, и пятидесяти) причинам. Во‑первых, фактически равна нулю вероятность отыскать в тканях, пролежавших 10 000 лет в вечной мерзлоте, клетку с неповрежденными хромосомами: их разрушат кристаллики льда, остаточная активность ферментов, космические лучи… Часть остальных причин разберем на примере другой, менее нереальной идеи.


Упрощенное генеалогическое древо семейства слоновых

Геном мамонта международная группа ученых прочитала почти полностью еще в 2008 году. Его хромосомы можно собрать «по кирпичику» — синтезировать цепочки нуклеотидов, и даже не все шесть с лишним миллиардов, а несколько тысяч пар генов (из примерно 20 000), которые отличаются от аналогичных участков ДНК самого близкого из выживших родственников мамонтов — азиатского слона. Останется «всего лишь» прочитать геном этого слона, сравнить его с геномом мамонта, получить культуру слоновьих эмбриональных клеток, заменить в их хромосомах нужные гены — и вперед, по дороге, проторенной Яном Уилмутом, ведущим на веревочке овечку Долли.

Самых разных животных, от рыб до мартышек, с тех пор наклонировали множество. Правда, клетки у доноров брали при жизни и при необходимости хранили в жидком азоте, и жизнеспособных новорожденных получается меньше 1% от яйцеклеток с пересаженным ядром. И гены при этом если и меняли, то один-два, а не тысячи. И пересаживали яйцеклетки животным того же вида или очень близкородственного, а индийские слоны и мамонты — примерно такие же «родственники», как люди и шимпанзе.

Сможет ли слониха принять эмбрион мамонта, вынашивать его два года и родить живого и здорового детеныша? Весьма сомнительно. И что вы будете делать с одним-единственным мамонтенком? Для поддержания популяции даже в «парке плейстоценового периода» необходимо стадо хотя бы в сотню голов.


И весьма желательно, чтобы они не были родными братьями и сестрами, иначе слишком высока вероятность наследственных болезней у их потомства — а последние мамонты вымерли в том числе и потому, что не смогли приспособиться к очередному потеплению из-за слишком малой вариативности их геномов. И так далее. Но если когда-нибудь клонировать мамонтов все же удастся, на севере Якутии им давно приготовили и стол, и дом.

Плейстоценовый парк

Несколько десятков тысяч лет назад на месте нынешней тундры в таких же, как в наше время, климатических условиях колосилась похожая на саванну тундростепь, в которой бизонов, мамонтов, шерстистых носорогов, пещерных львов и прочей живности было примерно столько же, как сейчас — слонов, носорогов, антилоп, львов и другого зверья в африканских заповедниках. Короткого северного лета растениям хватало, чтобы накопить достаточно биомассы и для себя, и для прокорма травоядных на время полярной ночи.

Но во время последнего масштабного потепления, около 10 000 лет назад, животные мамонтовой степи вымерли (возможно, первобытные охотники немного ускорили этот процесс). Без навоза зачахли растения, экосистема пошла вразнос, и еще через несколько тысяч лет тундра стала безвидна и почти пуста.


Но в 1980 году в заказнике неподалеку от города Черского в устье Колымы группа энтузиастов во главе с руководителем Северо-Восточной научной станции РАН Сергеем Зимовым начала работу по воссозданию экосистемы мамонтовой степи с помощью интродукции в тундру выживших плейстоценовых животных или их современных аналогов, способных существовать в арктическом климате.

Начали они с огороженного участка площадью 50 га и небольшого стада якутских лошадок, которые вскоре выщипали и вытоптали почти всю растительность в этом слишком маленьком для них «краале». Но это было только начало. Сейчас (пока — на чуть большей площади, 160 га) к лошадям уже подселили лосей, северных оленей, овцебыков, маралов и зубров.

Скромные достижения

Последний из истребленных собаками динго, туземцами и, окончательно, европейскими овцеводами тасманийских сумчатых волков — тилацинов (Thylacinus cynocephalus) умер в зоопарке в 1936 году. В 2008 году исследователи из Мельбурнского университета выделили из заспиртованных тканей музейных образцов тилацина один из регуляторных генов, усиливающих синтез белка другого гена, который отвечает за развитие хрящей и костей, и заменили им аналогичный ген-регулятор в яйцеклетках мышей. В двухнедельных мышиных эмбрионах (родиться потенциальным уродцам не позволили) синтезировался не мышиный, а тилациновый белок Col2A1. Но о возрождении сумчатого волка на мышиной основе даже мечтать не стоит — это просто генетический фокус, результаты которого, возможно, когда-нибудь пригодятся, например, для изучения функций генов исчезнувших видов.
В той же Австралии весной этого года биоинженеры из Университета Нового Южного Уэльса попытались вырастить вымершую всего лет 30 назад лягушку Rheobatrachus silus — мелкую зверушку, любопытную тем, что ее самки вынашивали икру во рту. Ядра из замороженных тканей R. silus ученые внедрили в икринки самого близкого к ней вида лягушек, Mixophyes fasciolatus, и даже дождались нескольких делений яйцеклеток, а после этого эмбрионы погибли. Но лиха беда начало, хотя для публики эта земноводная мелочь — совсем не то, что динозавры.
Неудачей, хотя и намного меньшей, закончился и эксперимент исследователей из Сарагосского университета по клонированию пиренейского горного козла, последний представитель которых погиб в 2000 году. Первые две попытки добиться рождения козлят из эмбрионов, полученных из ядер клеток, замороженных еще при жизни последней особи, и яйцеклеток домашней козы, закончились в лучшем случае выкидышами. На третий раз (в 2009 г.) испанские ученые создали 439 химерных эмбрионов, 57 из которых начали делиться и были имплантированы в матки суррогатных матерей. К сожалению, из семи забеременевших коз до родов дотянула только одна, а козленок умер через несколько минут после рождения из-за проблем с дыханием.

Правда, зубры — обитатели широколиственных лесов, и если они не сумеют адаптироваться в Арктике, их планируют заменить более подходящим видом — лесными бизонами. Надо только дождаться, пока увеличится их небольшое стадо, присланное коллегами из заповедников северной Канады и определенное на постой в питомник на юге Якутии.

Когда (и если) вместо большого парка проект получит площадь, достаточную для организации заповедника, можно будет выпустить из вольеров волков и медведей и даже попытаться интродуцировать амурских тигров — самую подходящую из имеющихся замену пещерным львам. Ну а мамонты? А мамонты — потом. Если получится.


Летите, голуби?

Проект возрождения американских странствующих голубей (Ectopistes migratorius) с экологией никак не связан. Даже наоборот, еще в начале XIX века на востоке Северной Америки странствующие голуби летали стаями в сотни миллионов птиц, объедая леса, как саранча, и оставляя за собой дюймовый слой помета, устраивали на деревьях колонии из сотни гнезд и, несмотря на все старания хищников, индейцев, а потом и первых белых поселенцев, не уменьшались в числе.

Но с появлением железных дорог охота на странствующих голубей стала выгодным бизнесом. Стреляй не глядя в пролетающую над фермой тучу или собирай птенцов, как яблоки, и сдавай скупщику — пучок за пятачок, зато пучков — сколько дотащишь. Всего за четверть века от миллиардов странствующих голубей осталось несколько тысяч — слишком мало для того, чтобы восстановить популяцию этих коллективистов, даже если бы в те времена это кому-то пришло в голову. Последняя странствующая голубка умерла в зоопарке в 1914 году.


Мечтой возродить странствующего голубя воспылал молодой американский генетик Бен Новак. Он даже сумел получить под свою идею финансирование от фонда Revive and Restore («Возродить и восстановить») — одного из отделений основанной писателем Стюартом Брэндом организации Long Now, поддерживающей экстравагантные, но не слишком безумные проекты в разных областях наук.

Как материал для перестановки генов Бен планирует использовать яйцеклетки полосатохвостого голубя — вида, наиболее родственного странствующему. Правда, от общего предка их отделяют 30 млн лет и куда большее, чем между мамонтами и слонами, число мутаций. И опыт с заменой генов в эмбрионах птиц более-менее отработан только на курицах, а с голубями до сих пор никто не имел дела…

Но геном странствующего голубя уже прочитан по образцу тканей, предоставленному одним из музеев, и в марте 2013 года Новак начал работу по реконструкции вымершей птицы в Университете Калифорнии в Санта-Круз. Правда, даже если проект завершится удачей, его результаты будут жить в зоопарках: в природе странствующие голуби могут существовать только в составе многомиллионных стай. Что ждет «кукурузный пояс» США, если эти стаи смогут приспособиться к новым условиям жизни?

Хотя, даже если воссоздать странствующих голубей не удастся, полученные результаты пригодятся для попыток возрождения дронтов (смешных птиц Додо), новозеландских моа, похожих на них мадагаскарских эпиорнисов и других недавно вымерших видов птиц.


В январе 2013 мировые СМИ облетела невероятная новость: известный генетик Джордж Черч из Гарвардского университета ищет отважную женщину на роль суррогатной матери для клонирования неандертальца. Через день все приличные издания, клюнувшие на эту наживку, опубликовали опровержение: оказалось, что журналисты из Daily Mail немножко ошиблись при переводе интервью в немецком еженедельнике Spiegel. Черч, который геномом неандертальца никогда не занимался, всего лишь рассуждал о том, что теоретически клонировать его когда-нибудь будет можно, но нужно ли?

Курозавры: вперед, в прошлое!

А теперь вернемся к тому ученому, с которого начали, — Джеку Хорнеру из Университета штата Монтана, автору книги «Как построить динозавра» (How to Build a Dinosaur). Правда, это будет скорее курозавр: проект так и называется — Chickenosaurus, и на его осуществление, по мнению автора, потребуется всего пять лет. Для этого нужно «разбудить» в курином эмбрионе сохранившиеся, но не активные гены динозавров. Начать можно будет с зубов: у археоптерикса и других первоптиц зубы были вполне неплохие. Правда, максимум, которого смогли добиться работающие в этой области исследователи, — это 16-дневные куриные зародыши с несколькими коническими зубками в передней части клюва, но дорога в тысячу ли начинается с первого шага…


Именно так, в несколько этапов — шаг за шагом, ген за геном, белок за белком — Хорнер и планирует вырастить своих курозавров. Четвертый палец убрать, крылья превратить в лапки… И потребуется на первый этап проекта пять-семь лет работы и пара миллионов долларов. Правда, сведений о том, что проект «Курозавры» получил финансирование, пока нет. Но меценат наверняка найдется: не так уж важно, что это будут не совсем настоящие динозаврики и для начала — размером с курицу. Зато красиво.

Кстати о красоте: темная раскраска и чешуя у динозавров в «Парке юрского периода» делает их более страшными, но, скорее всего, не соответствует действительности. И Хорнер, и многие другие палеонтологи давно придерживаются мнения о том, что большинство, если не все наземные динозавры были теплокровными и покрыты яркими перьями. В том числе и Ужасный Царственный Ящер — Tyrannosaurus rex. Теплокровность — пока вопрос спорный, но несомненные следы перьев на окаменелых останках близких родственников тираннозавра — Yutyrannus huali (в переводе с латинско-китайского — «Красивый тиран в перьях», вес — почти 1,5 т, длина — 9 м) — недавно обнаружила экспедиция китайских палеонтологов. И что с того, что по строению его примитивные перья длиной до 15 см больше похожи на цыплячий пушок, а не на сложные перья современных птиц? Ну не может быть, чтобы они не были красиво раскрашены!

А если будущие мамонты, дронты, динозавры и прочие вымершие животные будут не совсем настоящими, а почти идентичными натуральным — кто из вас откажется прогуляться по парку периода, на первый взгляд неотличимого от юрского или плейстоценового?

Один из наших читателей в комментариях отметился вопросом: «Когда уже генетики воскресят динозавров?» С выходом «Мира юрского периода», а также после многочисленных новостей про успехи некоторых групп ученых мы решили взяться за эту тему и поведать тебе новости из мира науки по поводу воскрешения чего-либо давно уже мертвого. Заранее скажем, что постарались озвучить в основном позитивные новости.

Итак, воскрешение вымерших видов – звучит немного зловеще. И правда, сразу вспоминаешь старые фильмы ужасов, где какой-нибудь сумасшедший профессор воскрешает мертвых путём электрического воздействия и вливания каких-то странных зелёных жидкостей, а потом раздаётся жуткий смех и монстр выходит из-под контроля. , не иначе.

Но в действительно всё выглядит не настолько жутко, да и преследуемые цели вполне благородны. Вымершие виды могут многое поведать нам о прошлом нашей планеты, кроме того, их воссоздание лишний раз докажет, что люди могут справиться с совершенно разными, на первый взгляд, неразрешенными проблемами.

Но ясное дело, что всё сразу не делается. И многие ученые, положительно высказывающиеся о возможности воскрешения динозавра, сначала собираются взяться за задачу менее масштабную, но, однако, тоже из области фантастики. Эта задача – воскрешение мамонта. И вот поиск ее решения идет уже полным ходом с весны этого года. Можно даже наблюдать некую гонку разных научных групп, которые взялись за воскрешение исчезнувшего животного.

Напомним, мамонты вымерли около 10 тысяч лет назад, а появились в эпоху плиоцена. Их высота могла достигать 5,5 метров, а вес мог быть около 12 тонн. Если исходить из массы, то мамонт примерно вдвое превосходил по этому параметру современных слонов.

Одна из групп – это исследовательский коллектив Джорджа Черча из Гарварда. Черч является сторонником полной расшифровки генома мамонта, для того чтобы воссоздать вымерший вид слонов. Другие же считают возможным клонирование мамонтов с помощью останков, которые обнаружены в вечной мерзлоте.

Мы работали прежде всего с генами, отвечающими за выживание организма в условиях низких температур: генами шерстяного покрова, крупных ушей, подкожного жира и, прежде всего, гемоглобина. Сейчас в нашем распоряжении имеются здоровые клетки слона с фрагментами ДНК мамонта. Мы пока не представили результаты этого опыта в рецензируемом научном журнале, но собираемся сделать это в ближайшее время.
Джордж Черч

Мамонты, по мнению генетика, смогут стабилизировать экосистему сибирской тундры. Весьма благородная задача, и надеемся, она станет выполнимой в скором будущем. А надежды в этом плане вполне обоснованны.

Совсем недавно другая исследовательская группа под руководством доктора Винсента Линча, Университет Чикаго, закончила первый этап изучения генома мамонта. Полученные гены поразили ученых своими особенностями. Так, например, ген ТRPV3 помогал животным жить в условиях вечной мерзлоты. Генетики внедрили этот ген в геном лабораторных крыс, тела которых вскоре обросли мехом. В итоге крысы предпочли проживать в самых прохладных участках вольера.

Как минимум три команды в настоящий момент заняты восстановлением генома мамонта и если эксперименты завершаться удачно, то в будущем станет возможным воссоздать и других существ, главным образом по ДНК, найденном в окаменелых останках.

Стоит заметить, что подобная работа хотя и ведется в динамичном режиме, но её плоды мы едва ли сможем увидеть в следующем году.

Ну, а теперь немного реализма. Увидим ли мы реальных динозавров на нашем веку? Скорее всего, нет. По объективным причинам. Даже при таких серьезных прорывах в области генетики мы вряд ли сможем найти достаточно хороший генетический материал вымерших рептилий.

Хотя есть оптимистичный прогноз американского палеонтолога Джека Хорнера, он же и главный научный консультант фильма «Парк юрского периода». Он известен своими попытками воссоздать динозавра, ему также удавалось успешно находить окаменелости, содержащие кровеносные сосуды и мягкие ткани. Но найти полную ДНК ему, как и многим другим, пока ещё не удалось. Поэтому Джек решил пойти другим путём, а именно путём отката эволюции. С помощью генной инженерии ученый собирается вернуть обычную курицу к состоянию своих дальних предков. Хорнер считает, что его проект будет успешным, и от возвращения динозавров человечество отделяют считанные годы.

Думаю, мы способны достичь такого набора генетических изменений в одном эмбрионе, в результате которого животное успешно вылупится и будет жить нормальной жизнью, двигаясь и функционируя без проблем. Я очень удивлюсь, если мы не сделаем этого в течение 10 лет. А если нам повезет, мы получим его в течение ближайших пяти лет, потратив на весь процесс не более пяти миллионов долларов.
Джек Хорнер

Идею Хорнера подхватили и другие биологи. Например, исследовательская группа во главе с Архатом Абжановым из Гарварда и Бхартом-Анджаном Бхулларом из Чикаго смогли получить эмбрионы кур с мордами динозавров, подавив развитие белков с помощью которых образуются клювы. Цифровые модели черепов показали, что кости во многих из них оказались похожи на черепные кости первоптиц (археоптерикс) и динозавров (таких как велоцираптор).

Судите сами, мы уже смогли создать эмбрионы птиц с зубами, изменили строение головы. Сейчас мы работаем над хвостом и лапами. Поэтому я уверен, что с помощью генной инженерии мы сможем создать курозавра в ближайшие пять–десять лет. Ведь птицы – это остановившиеся в развитии динозавры.
Джек Хорнер

В любом случае нам кажется, что перспективы в этом направлении имеются. Существует большая проблема с тем, чтобы воссоздать геном динозавров, которые вымерли миллионы лет назад, но возможно, исследования действительно пойдут другим путём – путём отката эволюции. Что из этого может выйти? Как знать, возможно, ничего. Но может, нам ещё суждено увидеть какого-нибудь мелкого ублюдка из древности, который поразит нас своей странностью и непохожестью на всё то, что мы видели до этих пор.

В июне на больших экранах вышла , вызвав у любопытных зрителей новую порцию вопросов о его научной правдоподобности. Можно ли воскресить динозавров, используя описанный фантастами метод?

На этот вопрос в колонке для The Conversation ответил Даррен Гриффин, профессор генетики из Кентского университета.

Как клонировали динозавров в «Парке юрского периода»

«Во-первых, идея о том, что неповрежденная ДНК динозавров сохранится внутри застывших в янтаре кровососущих насекомых попросту нескладная, — пишет Гриффин. — Доисторических москитов, пивших кровь динозавров, действительно находили. Но содержащаяся в этой крови ДНК давно деградировала.

В отличие от неандертальцев и шерстистых мамонтов, чью ДНК успешно изолировали, динозавры слишком древние. Самой старой среди когда-либо обнаруженных ДНК всего около миллиона лет. Но чтобы получить ДНК динозавра, нам пришлось бы вернуться как минимум на 66 млн лет назад.

Во-вторых, даже если бы мы могли извлечь ДНК динозавров, она была бы измельчена на миллионы крошечных частиц, и мы бы понятия не имели, как их упорядочить. Это было бы похоже на попытку собрать самый сложный пазл в мире, не представляя, как выглядит исходное изображение и сколько в нем должно быть фрагментов.

В «Парке юрского периода» ученые находят эти недостающие фрагменты и заполняют их ДНК лягушки. Но это не даст вам динозавра. Это даст гибрид или« лягушкозавра». Было бы также более разумно использовать ДНК птицы, поскольку они более тесно связаны с динозаврами(хотя это все равно не сработает).

В-третьих, идея, что для восстановления животного нужен всего лишь виток ДНК — научная фантастика. ДНК является отправной точкой, но развитие животного внутри яйца представляет собой сложный« танец» генов, включающихся и включающихся в нужное время.

Короче говоря, вам нужны идеальное яйцо динозавра и вся сложная химия, содержащаяся в нем. В книге ученые производят искусственные яйца, в фильмах используют страусиные. Ни один из этих способов не сработает. Нельзя положить куриную ДНК внутрь страусиного яйца и получить цыпленка(а люди пытались). То же самое можно сказать о велоцирапторе".

Генетик в пух и прах разносит мечты наивных поклонников фантастической франшизы, но подчеркивает, что в будущем подобную технологию можно будет использовать для того, чтобы компенсировать часть вреда, причиненного животным людьми.

«Человечество застало исчезновение птиц — додо и странствующего голубя. Восстановление их ДНК, возраст которой составляет всего несколько сотен лет, является гораздо более реалистичным предложением. Возможно также, что яйца живущих ныне генетически близких видов станут достаточно хорошей средой, и мы используем их, чтобы воскресить вымерших животных».