Open
Close

Большой адронный коллайдер: назначение, открытия и мифы. Большой адронный коллайдер. Для чего он нужен? Для чего был создан коллайдер

В 100 метрах под землей, на границе Франции и Швейцарии, расположено устройство, которое способно приоткрыть тайны мироздания. Или, по мнению некоторых, уничтожить всю жизнь на Земле.

Так или иначе, это самая большая машина в мире, и она используется для исследования мельчайших частиц во Вселенной. Это Большой адронный (не андроидный) коллайдер (LHC).

Краткое описание

LHC является частью проекта, который возглавляет Европейская организация ядерных исследований (ЦЕРН). Коллайдер включен в комплекс ускорителей ЦЕРН за пределами Женевы в Швейцарии и используется для разгона пучков протонов и ионов до скорости, приближающейся к скорости света, столкновения частиц друг с другом и записи результирующих событий. Ученые надеются, что это поможет больше узнать о возникновении Вселенной и о ее составе.

Что такое коллайдер (LHC)? Это самый амбициозный и мощный ускоритель частиц, построенный на сегодняшний день. Тысячи ученых из сотен стран сотрудничают и конкурируют друг с другом в поиске новых открытий. Для сбора данных экспериментов предусмотрены 6 участков, расположенные вдоль окружности коллайдера.

Сделанные с его помощью открытия могут стать полезными в будущем, но это не причина его постройки. Цель Большого адронного коллайдера - расширить наши знания о Вселенной. Учитывая, что LHC стоит миллиарды долларов и требует сотрудничества многих стран, отсутствие практического применения может быть неожиданным.

Для чего нужен Адронный коллайдер?

В попытке понять нашу Вселенную, ее функционирование и фактическую структуру, ученые предложили теорию, называемую стандартной моделью. В ней предпринята попытка определить и объяснить фундаментальные частицы, которые делают мир таким, каким он есть. Модель объединяет элементы теории относительности Эйнштейна с квантовой теорией. В ней также учтены 3 из 4 основных сил Вселенной: сильные и слабые ядерные взаимодействия и электромагнетизм. Теория не касается 4-й фундаментальной силы - силы тяжести.

Стандартная модель дала несколько предсказаний о Вселенной, которые согласуются с различными экспериментами. Но есть и другие ее аспекты, которые требовали подтверждения. Один из них - теоретическая частица, называемая бозоном Хиггса.

Его открытие дает ответ на вопросы о массе. Почему материя ею обладает? Ученые идентифицировали частицы, у которых нет массы, например, нейтрино. Почему у одних она есть, а у других - нет? Физики предложили много объяснений.

Самое простое из них - механизм Хиггса. Эта теория гласит, что существует частица и соответствующая ей сила, которая объясняет наличие массы. Ранее она никогда не наблюдалась, поэтому события, создаваемые LHC, должны были либо доказать существование бозона Хиггса, либо дать новую информацию.

Еще один вопрос, которым задаются ученые, связан с зарождением Вселенной. Тогда материя и энергия были одним целым. После их разделения частицы вещества и антиматерии уничтожили друг друга. Если бы количество их было равным, то ничего бы не осталось.

Но, к счастью для нас, во Вселенной материи было больше. Ученые надеются наблюдать антивещество во время работы LHC. Это могло бы помочь понять причину разницы в количестве материи и антиматерии, когда началась Вселенная.

Темная материя

Современное понимание Вселенной предполагает, что пока можно наблюдать лишь около 4% материи, которая должна существовать. Движение галактик и других небесных тел говорит о том, что существует гораздо больше видимого вещества.

Ученые назвали эту неопределенную материю темной. Наблюдаемая и темная материя составляют около 25%. Другие 3/4 исходят от гипотетической темной энергии, которая способствует расширению Вселенной.

Ученые надеются, что их эксперименты либо предоставят дополнительные доказательства существования темной материи и темной энергии, либо подтвердят альтернативную теорию.

Но это лишь верхушка айсберга физики элементарных частиц. Есть еще более экзотические и противоречивые вещи, которые необходимо выявить, для чего и нужен коллайдер.

Большой взрыв в микромасштабах

Сталкивая протоны с достаточно большой скоростью, LHC разбивает их на более мелкие атомные субчастицы. Они очень нестабильны, и до распада или рекомбинации существуют только долю секунды.

Согласно теории Большого взрыва, первоначально из них состояла все материя. По мере расширения и охлаждения Вселенной они объединились в более крупные частицы, такие как протоны и нейтроны.

Необычные теории

Если теоретические частицы, антиматерия и темная энергия, не являются достаточно экзотичными, некоторые ученые считают, что LHC может предоставить доказательства существования других измерений. Принято считать, что мир является четырехмерным (трехмерное пространство и время). Но физики предполагают, что могут существовать и другие измерения, которые люди не могут воспринимать. Например, одна версия теории струн требует наличия не менее 11 измерений.

Адепты этой теории надеются, что LHC предоставит доказательства предлагаемой ими модели Вселенной. По их мнению, фундаментальными строительными кирпичиками являются не частицы, а струны. Они могут быть открытыми или закрытыми, и вибрировать подобно гитарным. Различие в колебаниях делает струны разными. Одни проявляют себя в виде электронов, а другие реализуются как нейтрино.

Что такое коллайдер в цифрах?

LHC представляет собой массивную и мощную конструкцию. Он состоит из 8 секторов, каждый из которых является дугой, ограниченной на каждом конце секцией, называемой «вставкой». Длина окружности коллайдера равна 27 км.

Трубки ускорителя и камеры столкновений находятся на глубине 100 метров под землей. Доступ к ним обеспечивает сервисный туннель с лифтами и лестницами, расположенными в нескольких точках вдоль окружности LHC. ЦЕРН также построил наземные здания, в которых исследователи могут собирать и анализировать данные, генерируемые детекторами коллайдера.

Для управления пучками протонов, движущихся со скоростью равной 99,99% скорости света, используются магниты. Они огромны, весят несколько тонн. В LHC имеется около 9 600 магнитов. Они охлаждаются до 1,9К (-271,25 °C). Это ниже температуры космического пространства.

Протоны внутри коллайдера проходят по трубам со сверхвысоким вакуумом. Это необходимо, чтобы не было частиц, с которыми они могли бы столкнуться до достижения цели. Единственная молекула газа может привести к неудаче эксперимента.

На окружности большого коллайдера есть 6 участков, где инженеры смогут проводить свои эксперименты. Их можно сравнить с микроскопами с цифровой камерой. Некоторые из этих детекторов огромны - ATLAS представляет собой устройство длиной 45 м, высотой 25 м и весом 7 т.

В LHC задействовано около 150 млн датчиков, которые собирают данные и отправляют их в вычислительную сеть. Согласно ЦЕРН объем информации, получаемой во время экспериментов, составляет около 700 МБ/с.

Очевидно, что такому коллайдеру требуется много энергии. Его годовая потребляемая мощность составляет около 800 ГВт∙ч. Она могла быть намного больше, но объект не работает в зимние месяцы. По данным ЦЕРН стоимость энергии составляет порядка 19 млн евро.

Столкновение протонов

Принцип, лежащий в основе физики коллайдера, довольно прост. Сперва производится запуск двух пучков: одного - по часовой стрелке, а второго - против. Оба потока ускоряются до скорости света. Затем их направляют навстречу друг к другу и наблюдают результат.

Оборудование, необходимое для достижения этой цели, намного сложнее. LHC является частью комплекса ЦЕРН. Прежде, чем какие-либо частицы войдут в LHC, они уже проходят ряд шагов.

Во-первых, для получения протонов ученые должны лишить атомы водорода электронов. Затем частицы направляются в установку LINAC 2, которая запускает их в ускоритель PS Booster. Эти машины для ускорения частиц используют переменное электрическое поле. Удерживать пучки помогают поля, создаваемые гигантскими магнитами.

Когда луч достигает нужного энергетического уровня, PS Booster направляет его в суперсинхротрон SPS. Поток ускоряется еще больше и делится на 2808 пучков по 1,1 x 1011 протонов. SPS вводит лучи в LHC по часовой и против часовой стрелки.

Внутри Большого адронного коллайдера протоны продолжают ускоряться в течение 20 минут. На максимальной скорости они совершают 11245 оборотов вокруг LHC каждую секунду. Лучи сходятся на одном из 6 детекторов. При этом происходит 600 млн столкновений в секунду.

Когда сталкиваются 2 протона, они расщепляются на более мелкие частицы, в том числе кварки и глюоны. Кварки очень неустойчивы и распадаются за долю секунды. Детекторы собирают информацию, отслеживая путь субатомных частиц, и направляют ее в вычислительную сеть.

Не все протоны сталкиваются. Остальные продолжают движение до секции сброса луча, где поглощаются графитом.

Детекторы

Вдоль окружности коллайдера расположены 6 секций, в которых производится сбор данных и проводятся эксперименты. Из них 4 детектора основные и 2 меньшего размера.

Самым крупным является ATLAS. Его размеры - 46 х 25 х 25 м. Трекер обнаруживает и анализирует импульс частиц, проходящих через ATLAS. Его окружает калориметр, измеряющий энергию частиц, поглощая их. Ученые могут наблюдать траекторию их движения и экстраполировать информацию о них.

Детектор ATLAS также имеет мюонный спектрометр. Мюоны - это отрицательно заряженные частицы в 200 раз тяжелее электронов. Они единственные способны проходить через калориметр без остановки. Спектрометр измеряет импульс каждого мюона датчиками заряженных частиц. Эти сенсоры могут обнаруживать флуктуации в магнитном поле ATLAS.

Компактный мюонный соленоид (CMS) является детектором общего назначения, который обнаруживает и измеряет субчастицы, высвобождаемые во время столкновений. Прибор находится внутри гигантского соленоидного магнита, который может создать магнитное поле, почти в 100 тысяч раз превышающее магнитное поле Земли.

Детектор ALICE разработан для изучения столкновений ионов железа. Таким образом исследователи надеются воссоздать условия, подобные тем, которые произошли сразу после Большого взрыва. Они ожидают увидеть, как ионы превращаются в смесь кварков и глюонов. Основным компонентом ALICE является камера TPC, служащая для изучения и воссоздания траектории частиц.

LHC служит для поиска доказательств существования антивещества. Он делает это путем поиска частицы, называемой прелестным кварком. Ряд субдетекторов, окружающих точку столкновения, имеет 20 метров в длину. Они могут улавливать очень неустойчивые и быстро распадающиеся частицы прелестных кварков.

Эксперимент ТОТЕМ проводится на участке с одним из малых детекторов. Он измеряет размер протонов и яркость LHC, указывающей на точность создания столкновений.

Эксперимент LHC имитирует космические лучи в контролируемой среде. Его целью является помощь в разработке широкомасштабных исследований реальных космических лучей.

На каждом участке детектирования работает команда исследователей, насчитывающая от нескольких десятков до более тысячи ученых.

Обработка данных

Неудивительно, что такой коллайдер генерирует огромный поток данных. 15 000 000 ГБ, ежегодно получаемых детекторами LHC, ставят перед исследователями огромную задачу. Ее решением является вычислительная сеть, состоящая из компьютеров, каждый из которых способен самостоятельно анализировать фрагмент данных. Как только компьютер завершит анализ, он отправляет результаты на центральный компьютер и получает новую порцию.

Ученые из ЦЕРН решили сосредоточиться на использовании относительно недорогого оборудования для выполнения своих расчетов. Вместо приобретения передовых серверов и процессоров используется имеющееся оборудование, которое может хорошо работать в сети. При помощи специального ПО сеть компьютеров сможет хранить и анализировать данные каждого эксперимента.

Опасность для планеты?

Некоторые опасаются, что такой мощный коллайдер может представлять угрозу для жизни на Земле, в том числе участвовать в формировании черных дыр, «странной материи», магнитных монополий, радиации и т.д.

Ученые последовательно опровергают такие утверждения. Образование черной дыры невозможно, поскольку между протонами и звездами есть большая разница. «Странная материя» уже давно бы могла образоваться под действием космических лучей, и опасность этих гипотетических образований сильно преувеличена.

Коллайдер чрезвычайно безопасен: он отделен от поверхности 100-метровым слоем грунта, а персоналу запрещено находиться под землей во время проведения экспериментов.

История создания ускорителя, который мы знаем сегодня как большой адронный коллайдер, начинается ещё с 2007 года. Изначально хронология ускорителей началась с циклотрона. Прибор представлял собой небольшое устройство, которое легко умещалось на столе. Затем история ускорителей стала стремительно развиваться. Появился синхрофазотрон и синхротрон.

В истории, пожалуй, самым занимательным стал период с 1956 по 1957 годы. В те времена советская наука, в частности физика, не отставала от зарубежных братьев. Используя наработанный годами опыт, советский физик по имени Владимир Векслер совершил прорыв в науке. Им был создан самый мощный по тем временам синхрофазотрон. Его рабочая мощность была равна 10 гигаэлектронвольт (10 миллиардов электронвольт). После этого открытия создавались уже серьёзные образцы ускорителей: большой электронно-позитронный коллайдер, Швейцарский ускоритель, в Германии, США. Все они имели одну общую цель — изучение фундаментальных частиц кварков.

Большой адронный коллайдер был создан в первую очередь благодаря стараниям итальянского физика. Имя ему Карло Руббиа, лауреат Нобелевской премии. Во время своей деятельности Руббиа работал директором в Европейской организации по ядерным исследованиям. Решено было построить и запустить адронный коллайдер именно на месте центра исследований.

Где адронный коллайдер?

Коллайдер размещён на границе между Швейцарией и Францией. Длина его окружности составляет 27 километров, поэтому его и называют большим. Кольцо ускорителя уходит вглубь от 50 до 175 метров. В коллайдере установлено 1232 магнита. Они являются сверхпроводящими, а значит из них можно выработать максимальное поле для разгона, так как затраты энергии в таких магнитах практически отсутствуют. Общий вес каждого магнита составляет 3,5 тонны при длине 14,3 метра.

Как и любой физический объект, большой адронный коллайдер выделяет тепло. Поэтому его необходимо постоянно остужать. Для этого поддерживается температура 1,7 К с помощью 12 миллионов литров жидкого азота. Помимо этого, для охлаждения используется (700 тысяч литров), и самое важное - используется давление, которое в десять раз ниже нормального атмосферного.

Температура 1,7 К по шкале Цельсия составляет -271 градус. Такая температура почти близка к называется минимально возможный предел, который может иметь физическое тело.

Внутренняя часть тоннеля не менее интересна. Там находятся ниобий-титановые кабели со сверхпроводящими возможностями. Их длина составляет 7600 километров. Общий вес кабелей равен 1200 тонн. Внутренность кабеля — это сплетение 6300 проволок с общим расстоянием в 1,5 миллиарда километров. Такая длина равна 10 астрономическим единицам. Например, равняется 10 таким единицам.

Если говорить о его географическом местоположении, то можно сказать, что кольца коллайдера лежат меж городов Сен-Жени и Форнее-Вольтер, расположенными на французской стороне, а также Мейрин и Вессурат - со Швейцарской стороны. Маленькое кольцо, именуемое PS, проходит вдоль границы по диаметру.

Смысл существования

Для того чтобы ответить на вопрос «для чего нужен адронный коллайдер», нужно обратиться к учёным. Многие учёные говорят, что это самое великое изобретение за весь период существования науки, и то, что без него у науки, которая известна нам сегодня, просто нет смысла. Существование и запуск большого адронного коллайдера интересны тем, что при столкновении частиц в адронном коллайдере происходит взрыв. Все мельчайшие частицы разлетаются в разные стороны. Образовываются новые частицы, которые могут объяснить существование и смысл многого.

Первое, что учёные старались найти в этих разбившихся частицах — это теоретически предсказанную физиком Питером Хиггсом элементарную частицу, названную Это потрясающая частица является носителем информации, как считается. Ещё её принято называть «частицей Бога». Открытие ее приблизило бы учёных к пониманию вселенной. Нужно отметить, что в 2012 году, 4 июля, адронный коллайдер (запуск его частично удался) помог обнаружить похожую частицу. На сегодняшний день учёные пытаются изучить её подробнее.

Долго ли...

Конечно, сразу возникает вопрос, а почему учёные так долго изучают эти частицы. Если есть прибор, то можно запускать его, и каждый раз снимать все новые и новые данные. Дело в том, что работа адронного коллайдера — это дорогостоящее удовольствие. Один запуск обходится в большую сумму. Например, годовой расход энергии равняется 800 млн. кВт/ч. Такой объем энергии расходует город, в котором проживает около 100 тыс. человек, по средним меркам. И это не считая затрат на обслуживание. Ещё одна причина - это то, что у адронного коллайдера взрыв, который происходит при сталкивании протонов, связан с получением большого объёма данных: компьютеры считывают столько информации, что на обработку уходит большое количество времени. Даже несмотря на то что мощность компьютеров, которые получают информацию, велика даже по сегодняшним меркам.

Следующая причина — это не менее известная Учёные, работающие с коллайдером в этом направлении, уверены, что видимый спектр всей вселенной составляет всего 4%. Предполагается, что оставшиеся — это тёмная материя и тёмная энергия. Экспериментально пытаются доказать то, что эта теория верна.

Адронный коллайдер: за или против

Выдвинутая теория о тёмной материи поставила под сомнение безопасность существования адронного коллайдера. Возник вопрос: "Адронный коллайдер: за или против?" Он волновал многих учёных. Все великие умы мира разделились на две категории. «Противники» выдвинули интересную теорию о том, что если такая материя существует, то у неё должна быть противоположная ей частица. И при столкновении частиц в ускорителе возникает тёмная часть. Существовал риск того, что тёмная часть и часть, которую мы видим, столкнутся. Тогда это могло бы привести к гибели всей вселенной. Однако после первого запуска адронного коллайдера эта теория была частично разбита.

Далее по значимости идёт взрыв вселенной, вернее сказать - рождение. Считается, что при столкновении можно пронаблюдать то, как вселенная вела себя в первые секунды существования. То, как она выглядела после происхождения Большого взрыва. Считается, что процесс столкновения частиц очень схож с тем, который был в самом начале зарождения вселенной.

Ещё не менее фантастичная идея, которую проверяют учёные - это экзотические модели. Это кажется невероятным, но есть теория, которая предполагает, что существуют иные измерения и вселенные с похожими на нас людьми. И как ни странно, ускоритель и здесь сможет помочь.

Проще говоря, цель существования ускорителя в том, чтобы понять, что такое вселенная, как она была создана, доказать или опровергнуть все существующие теории о частицах и связанных с ними явлениях. Конечно, на это потребуются годы, но с каждым запуском появляются новые открытия, которые переворачивают мир науки.

Факты об ускорителе

Всем известно, что ускоритель разгоняет частицы до 99% скорости света, но не многие знают, что процент равен 99,9999991% от скорости света. Это потрясающая цифра имеет смысл благодаря идеальной конструкции и мощным магнитам ускорения. Также нужно отметить некоторые менее известные факты.

Приблизительно 100 млн. потоков с данными, которые приходят от каждого из двух основных детекторов, могут в считаные секунды заполнить больше 100 тысяч компакт-дисков. Всего за один месяц количество дисков бы достигло такой высоты, что если их сложить в стопу, то хватило бы до Луны. Поэтому было принято решение собирать не все данные, которые приходят с детекторов, а лишь те, которые разрешит использовать система сбора данных, которая по факту выступает как фильтр для полученных данных. Было решено записывать лишь 100 событий, которые возникли в момент взрыва. Записываться эти события будут в архив вычислительного центра системы Большого адронного коллайдера, который расположен в Европейской лаборатории по физике элементарных частиц, которая по совместительству является местом расположения ускорителя. Записываться будут не те события, которые были зафиксированы, а те, которые представляют для научного сообщества наибольший интерес.

Последующая обработка

После записи сотни килобайт данных будут обрабатывать. Для этого используется более двух тысяч компьютеров, расположенных, в ЦЕРН. Задача этих компьютеров заключается в обработке первичных данных и формировании из них базы, которая будет удобна для дальнейшего анализа. Далее сформированный поток данных будет направлен на вычислительную сеть GRID. Эта интернет-сеть объединяет тысячи компьютеров, которые располагаются в разных институтах по всему миру, связывает более сотни крупных центров, которые расположены на трёх континентах. Все такие центры соединены с ЦЕРН с использованием оптоволокна - для максимальной скорости передачи данных.

Говоря о фактах, нужно упомянуть также о физических показателях строения. Туннель ускорителя находится в отклонении на 1,4% от горизонтальной плоскости. Сделано это в первую очередь для того, чтобы поместить большую часть туннеля ускорителя в монолитную скалу. Таким образом, глубина размещения на противоположных сторонах разная. Если считать со стороны озера, которое находится недалеко от Женевы, то глубина будет равна 50 метрам. Противоположная часть имеет глубину 175 метров.

Интересно то, что лунные фазы влияют на ускоритель. Казалось бы, как такой отдалённый объект может воздействовать на таком расстоянии. Однако замечено, что во время полнолуния, когда происходит прилив, земля в районе Женевы, поднимается на целых 25 сантиметров. Это влияет на длину коллайдера. Протяжённость тем самым увеличивается на 1 миллиметр, а также изменяется энергия пучка на 0,02%. Поскольку контроль энергии пучка должен проходить вплоть до 0,002%, исследователи обязаны учитывать это явление.

Также интересно то, что туннель коллайдера имеет форму восьмиугольника, а не круга, как многие представляют. Углы образуются из-за коротких секций. В них располагаются установленные детекторы, а также система, которая управляет пучком ускоряющихся частиц.

Строение

Адронный коллайдер, запуск которого связан с использованием многих деталей и волнением учёных, - удивительное устройство. Весь ускоритель состоит из двух колец. Малое кольцо называется Протонный синхротрон или, если использовать аббревиатуры — PS. Большое кольцо - Протонный суперсинхротрон, или SPS. Совместно два кольца позволяют разогнать части до 99,9 % скорости света. При этом коллайдер повышает и энергию протонов, увеличивая их суммарную энергию в 16 раз. Также он позволяет сталкивать частицы между собой примерно 30 млн. раз/с. в течение 10 часов. От 4 основных детекторов получается по большей мере 100 терабайт цифровых данных в секунду. Получение данных обусловлено отдельными факторами. Например, они могут обнаружить элементарные частицы, которые имеют отрицательный электрический заряд, а также обладают половинным спином. Поскольку эти частицы являются неустойчивыми, то прямое их обнаружение невозможно, возможно обнаружить только их энергию, которая будет вылетать под определённым углом к оси пучка. Эта стадия называется первым уровнем запуска. За этой стадией следят более чем 100 специальных плат обработки данных, в которые встроены логические схемы реализации. Эта часть работы характерна тем, что в период получения данных происходит отбор более чем 100 тысяч блоков с данными в одну секунду. Затем эти данные будут использоваться для анализа, который происходит с использованием механизма более высокого уровня.

Системы следующего уровня, наоборот, принимают информацию от всех потоков детектора. Программное обеспечение детектора работает в сети. Там оно будет использовать большое количество компьютеров для обработки последующих блоков данных, среднее время между блоками - 10 микросекунд. Программы должны будут создавать отметки частиц, соответствуя изначальным точкам. В результате получится сформированный набор данных, состоящих из импульса, энергии, траектории и других, которые возникли при одном событии.

Части ускорителя

Весь ускоритель можно поделить на 5 основных частей:

1) Ускоритель электронно-позитронного коллайдера. Деталь, представляет собой около 7 тысяч магнитов со сверхпроводящими свойствами. С помощью них происходит направление пучка по кольцевому туннелю. А также они сосредотачивают пучок в один поток, ширина которого уменьшится до ширины одного волоса.

2) Компактный мюонный соленоид. Это детектор, предназначенный для общего назначения. В таком детекторе ведутся поиски новых явлений и, например, поиск частиц Хиггса.

3) Детектор LHCb. Значение этого устройства заключается в поиске кварков и противоположных им частиц - антикварков.

4) Тороидальная установка ATLAS. Этот детектор предназначен для фиксации мюонов.

5) Alice. Этот детектор захватывает столкновения ионов свинца и протон-протонные столкновения.

Проблемы при запуске адронного коллайдера

Несмотря на то что наличие высоких технологий исключает возможность ошибок, на практике все иначе. Во время сборки ускорителя происходили задержки, а также сбои. Нужно сказать, что неожиданной такая ситуация не была. Устройство содержит столько нюансов и требует такой точности, что учёные ожидали подобных результатов. Например, одна из проблем, которая встала перед учёными во время запуска - отказ магнита, который фокусировал пучки протонов непосредственно перед их столкновением. Эта серьёзная авария была вызвана разрушением части крепления вследствие потери сверхпроводимости магнитом.

Эта проблема возникла 2007 году. Из-за неё запуск коллайдера откладывали несколько раз, и только в июне запуск состоялся, спустя почти год коллайдер все же запустился.

Последний запуск коллайдера прошёл успешно, было собрано множество терабайт данных.

Адронный коллайдер, запуск которого состоялся 5 апреля 2015 года, успешно функционирует. В течение месяца пучки будут гонять по кольцу, постепенно увеличивая мощность. Цели для исследования как таковой нет. Будет повышена энергия столкновения пучков. Значение поднимут с 7 ТэВ до 13 ТэВ. Такое увеличение позволит увидеть новые возможности при столкновении частиц.

В 2013 и 2014 гг. проходили серьёзные технические осмотры туннелей, ускорителей, детекторов и другого оборудования. В результате было 18 биполярных магнитов со сверхпроводящей функцией. Нужно отметить, что общее количество их составляет 1232 штуки. Однако оставшиеся магниты не остались без внимания. В остальных заменили системы защиты от остывания, поставили улучшенные. Также улучшена охлаждающая система магнитов. Это позволяет им оставаться при низких температурах с максимальной мощностью.

Если все пройдёт успешно, то следующий запуск ускорителя пройдёт лишь через три года. Через этот период намечены плановые работы по улучшению, техническому осмотру коллайдера.

Нужно отметить, что ремонт обходится в копейку, не учитывая стоимость. Адронный коллайдер, по состоянию на 2010 год имеет цену, равную 7,5 млрд. евро. Эта цифра выводит весь проект на первое место в списке самых дорогих проектов в истории науки.

Многие простые жители планеты задают себе вопрос о том, для чего нужен большой адронный коллайдер. Непонятные большинству научные исследования, на которые потрачено много миллиардов евро, вызывают настороженность и опаску.

Может, это и не исследования вовсе, а прототип машины времени или портал для телепортации инопланетных существ, способной изменить судьбу человечества? Слухи ходят самые фантастичные и страшные. В статье мы попытаемся разобраться, что такое адронный коллайдер и для чего он создавался.

Амбициозный проект человечества

Большой адронный коллайдер на сегодня является мощнейшим на планете ускорителем частиц. Он находится на границе Швейцарии и Франции. Точнее под нею: на глубине 100 метров залегает кольцевой тоннель ускорителя длиной почти 27 километров. Хозяином экспериментального полигона стоимостью, превышающей 10 миллиардов долларов, является Европейский центр ядерных исследований.

Огромное количество ресурсов и тысячи физиков-ядерщиков занимаются тем, что ускоряют протоны и тяжёлые ионы свинца до скорости, близкой к световой, в разных направлениях, после чего сталкивают их друг с другом. Результаты прямых взаимодействий тщательно изучаются.

Предложение создать новый ускоритель частиц поступило ещё в 1984 году. Десять лет велись различные дискуссии насчет того, что будет собой представлять адронный коллайдер, зачем нужен именно такой масштабный исследовательский проект. Только после обсуждения вопросов особенностей технического решения и требуемых параметров установки проект был утверждён. Строительство начали только в 2001 году, выделив для его размещения прежнего ускорителя элементарных частиц - большого электрон-позитронного коллайдера.

Зачем нужен большой адронный коллайдер

Взаимодействие элементарных частиц описывается по-разному. Теория относительности вступает в противоречия с квантовой теорией поля. Недостающим звеном в обретении единого подхода к строению элементарных частиц является невозможность создания теории квантовой гравитации. Вот зачем нужен адронный коллайдер повышенной мощности.

Общая энергия при столкновении частиц составляет 14 тераэлектронвольт, что делает устройство значительно более мощным ускорителем, чем все существующие сегодня в мире. Проведя эксперименты, ранее невозможные по техническим причинам, учёные с большой долей вероятности смогут документально подтвердить или опровергнуть существующие теории микромира.

Изучение кварк-глюонной плазмы, образующейся при столкновении ядер свинца, позволит построить более совершенную теорию сильных взаимодействий, которая сможет кардинально изменить ядерную физику и звёздного пространства.

Бозон Хиггса

В далёком 1960 году физик из Шотландии Питер Хиггс разработал теорию поля Хиггса, согласно которой частицы, попадающие в это поле, подвергаются квантовому воздействию, что в физическом мире можно наблюдать как массу объекта.

Если в ходе экспериментов удастся подтвердить теорию шотландского ядерного физика и найти бозон (квант) Хиггса, то это событие может стать новой отправной точкой для развития жителей Земли.

А открывшиеся управляющего гравитацией, многократно превысят все видимые перспективы развития технического прогресса. Тем более что передовых учёных больше интересует не само наличие бозона Хиггса, а процесс нарушения электрослабой симметрии.

Как он работает

Чтобы экспериментальные частицы достигли немыслимой для поверхности скорости, почти равной в вакууме, их разгоняют постепенно, каждый раз увеличивая энергию.

Сначала линейные ускорители делают инжекцию ионов и протонов свинца, которые после подвергают ступенчатому ускорению. Частицы через бустер попадают в протонный синхротрон, где получают заряд в 28 ГэВ.

На следующем этапе частицы попадают в супер-синхротрон, где энергия их заряда доводится до 450 ГэВ. Достигнув таких показателей, частицы попадают в главное многокилометровое кольцо, где в специально расположенных местах столкновения детекторы подробно фиксируют момент соударения.

Кроме детекторов, способных зафиксировать все процессы при столкновении, для удержания протонных сгустков в ускорителе используют 1625 магнитов, обладающих сверхпроводимостью. Общая их длина превышает 22 километра. Специальная для достижения поддерживает температуру −271 °C. Стоимость каждого такого магнита оценивается в один миллион евро.

Цель оправдывает средства

Для проведения таких амбициозных экспериментов и был построен самый мощный адронный коллайдер. Зачем нужен многомиллиардный научный проект, человечеству рассказывают с нескрываемым восторгом многие учёные. Правда, в случае новых научных открытий, скорее всего, они будут надёжно засекречены.

Даже можно сказать, наверняка. Подтверждением сему является вся история цивилизации. Когда придумали колесо, появились Освоило человечество металлургию - здравствуйте, пушки и ружья!

Все самые современные разработки сегодня становятся достоянием военно-промышленных комплексов развитых стран, но никак не всего человечества. Когда учёные научились расщеплять атом, что появилось первым? Атомные реакторы, дающие электроэнергию, правда, после сотен тысяч смертей в Японии. Жители Хиросимы однозначно были против научного прогресса, который забрал у них и их детей завтрашний день.

Техническое развитие выглядит насмешкой над людьми, потому что человек в нём скоро превратится в самое слабое звено. По теории эволюции, система развивается и крепнет, избавляясь от слабых мест. Может получиться в скором времени так, что нам не останется места в мире совершенствующейся техники. Поэтому вопрос "зачем нужен большой адронный коллайдер именно сейчас" на самом деле - не праздное любопытство, ибо вызван опасением за судьбу всего человечества.

Вопросы, на которые не отвечают

Зачем нам большой адронный коллайдер, если на планете миллионы умирают от голода и неизлечимых, а порой и поддающихся лечению болезней? Разве он поможет побороть это зло? Зачем нужен адронный коллайдер человечеству, которое при всём развитии техники вот уже как сто лет не может научиться успешно бороться с раковыми заболеваниями? А может, просто выгоднее оказывать дорогие медуслуги, чем найти способ исцелить? При существующем миропорядке и этическом развитии лишь горстке представителей человеческой расы весьма необходим большой адронный коллайдер. Зачем он нужен всему населению планеты, ведущему безостановочный бой за право жить в мире, свободном от посягательств на чью-либо жизнь и здоровье? История об этом умалчивает...

Опасения научных коллег

Есть другие представители научной среды, высказывающие серьёзные опасения по поводу безопасности проекта. Велика вероятность того, что научный мир в своих экспериментах, в силу своей ограниченности в знаниях, может утратить контроль над процессами, которые даже толком не изучены.

Такой подход напоминает лабораторные опыты юных химиков - всё смешать и посмотреть, что будет. Последний пример может закончиться взрывом в лаборатории. А если такой «успех» постигнет адронный коллайдер?

Зачем нужен неоправданный риск землянам, тем более что экспериментаторы не могут с полной уверенностью сказать, что процессы столкновений частиц, приводящие к образованию температур, превышающих в 100 тысяч раз температуру нашего светила, не вызовут цепной реакции всего вещества планеты?! Или просто вызовут способную фатально испортить отдых в горах Швейцарии или во французской Ривьере...

Информационная диктатура

Для чего нужен большой адронный коллайдер, когда человечество не может решить менее сложные задачи? Попытка замалчивания альтернативного мнения только подтверждает возможность непредсказуемости хода событий.

Наверное, там, где впервые появился человек, в него и была заложена эта двойственная особенность - делать благо и вредить себе одновременно. Быть может, нам ответ дадут открытия, которые подарит адронный коллайдер? Зачем нужен был этот рискованный эксперимент, будут решать уже наши потомки.

  • Что такое адронный коллайдер

    Наверняка почти каждый человек на Земле, хоть раз, да слышал о большом адронном коллайдере. Вот только, несмотря на то, что многие слышали о нем, мало кто понимает, что такое адронный колладейр, каково его предназначение, в чем суть адронного коллайдера. В нашей сегодняшней статье мы ответим на эти вопросы.

    Что такое адронный коллайдер

    По сути адронный коллайдер представляет собой сложный ускоритель элементарных частиц. С его помощью физикам удается разогнать протоны и тяжелые ионы. Изначально адронный коллайдер создавался для подтверждения существования , неуловимой элементарной частицы, которую физики порой в шутку называют «частичкой Бога». И да, существование этой частички было подтверждено экспериментально с помощью коллайдера, а сам ее первооткрыватель Питер Хиггс получил за это нобелевскую премию по физике в 2013 году.

    Разумеется, одним лишь бозоном Хиггса дело не ограничилось, помимо него физиками были найдены и некоторые другие элементарные частицы. Теперь вы знаете ответ на вопрос, зачем нужен адронный коллайдер.

    Что представляет собой большой адронный коллайдер

    Прежде всего, необходимо заметить, что большой адронный колайдер не возник на пустом месте, а появился как эволюция своего предшественника – большого электрон-позитронного коллайдера, представляющего собой 27-ми километровый подземный туннель, строительство которого началось еще в 1983 году. В 1988 году кольцевой тоннель сомкнулся, притом интересно то, что строители подошли к делу очень тщательно, настолько, что расхождение между двумя концами туннеля составляет лишь 1 сантиметр.

    Так выглядит схема адронного коллайдера.

    Электрон-позитронный коллайдер проработал до 2000 года и за время его работы в физике был сделан с его помощью целый ряд открытий, среди которых открытие W и Z бозонов и их дальнейшее исследование.

    С 2001 года на месте электрон-позитронного коллайдера началось уже строительство коллайдера адронного, которое закончилось в 2007 году.

    Где находится адронный коллайдер

    Большой адронный коллайдер находится на границе Швейцарии и Франции, в долине женевского озера, всего лишь в 15 км от самой Женевы. И располагается он на глубине 100 метров.

    Место расположения адронного коллайдера.

    В 2008 году начались его первые испытания под патронатом ЦЕРН – Европейской организации по ядерным исследованиям, которая на данный момент является крупнейшей лабораторией в мире в области физики высоких энергий.

    Для чего нужен адронный коллайдер

    С помощью этого гигантского ускорителя элементарных частиц физики могут проникать так глубоко внутрь материи, как никогда раньше. Все это помогает, как подтверждать старые научные гипотезы, так и создавать новые интересные теории. Детальное изучение физики элементарных частиц помогает нам приблизиться в поисках ответов на вопросы об устройстве Вселенной, о том, как она зародилась.

    Глубокое погружение в микромир позволяет открыть революционно новые пространственно-временные теории, и как знать, может быть, даже удастся проникнуть в тайну времени, этого четвертого измерения нашего мира.

    Как работает адронный коллайдер

    Теперь давайте опишем, как собственно работает большой адронный коллайдер. О принципах его работы говорит название, так как само слово «коллайдер» с английского переводится как «тот, кто сталкивает». Главная его задача – устроить столкновение элементарных частиц. Причем частицы в коллайдере летают (и сталкиваются) на скоростях, близких к скоростям света. Результаты столкновений частиц фиксируют четыре основных больших детектора: ATLAS, CMS, ALICE и LHCb и множество вспомогательных детекторов.

    Более детально принцип работы адронного коллайдера описан в этом интересно видео.

    Опасность адронного коллайдера

    В целом людям свойственно боятся вещей, которые они не понимают. Именно это иллюстрирует отношение к адроному коллайдеру и различные опасения, с ним связанные. Самые радикальные из них, высказывались, что в случае возможного взрыва адронного коллайдера может погибнуть, не много, не мало, а все человечество вместе с планетой Землей, которую поглотит образовавшаяся после взрыва . Разумеется, первые же опыты показали, что подобные опасения не более чем детская страшилка.

    А вот некоторые серьезные опасения относительно работы коллайдера были высказаны недавно умершим английским ученым Стивеном Хокингом. Причем опасения Хокинга связаны не столько с самим коллайдером, сколько с полученным с его помощью бозоном Хиггса. По мнению ученого этот бозон является крайне не стабильным материалом и в результате определенного стечения обстоятельств может привести к распаду вакуума и полному исчезновению таких понятий как пространство и время. Но не все так страшно, так согласно Хокингу, для того, чтобы произошло нечто подобное необходим коллайдер величиной с целую планету.

    При написании статьи старался сделать ее максимально интересной, полезной и качественной. Буду благодарен за любую обратную связь и конструктивную критику в виде комментариев к статье. Также Ваше пожелание/вопрос/предложение можете написать на мою почту [email protected] или в Фейсбук, с уважением автор.

  • БАК – это, прежде всего, большая страшилка. Но так ли опасна она и следует ли её бояться? И да, и нет! Во-первых, всё и даже больше, о чём собираются узнать физики и астрофизики уже заранее известно (см. ниже). А то, что представляет собой настоящую угрозу, из области их предположений, оказывается совсем иной угрозой. Я, почему так уверено говорю об этом, да только потому, что мной сделано 60 научных открытий свойств эфира Вселенной и поэтому об эфире известно всё, но пока мне одному. Во-первых, наука в корне ошибается в отношении «чёрных дыр». «Чёрные дыры» – это ядра всех галактик. Они огромные и их нельзя создать в миниатюре искусственно никоим образом. И вот почему? Любая галактика представляет собой гигантский естественный осциллятор, который циклически расширяется и сокращается с периодом в десятки миллиардов лет. В конце сокращения большинство галактик приобретают форму шара (ядро). Вся Вселенная, в том числе и все галактики, состоят главным образом из эфира. Эфир представляет собой идеальную неразрывную сжимаемую жидкость, сжатую до колоссального давления, имеет огромную плотность и, самое важное, его вязкость оказывается равной нулю. Ядро и есть «чёрная дыра», но в отличие от общепринятого представления о нём в нём нет, и не может быть, никакой материи в любом её виде – один лишь эфир. За сокращением галактики сразу же следует её расширение. В частности, из шарообразной формы дополнительно начинается образовываться дискообразная форма. В результате расширения в ней эфира его статическое давление внутри уменьшается. Через миллионы лет наступает первое критическое давление, при котором из эфира подобно капелькам росы появляются самые различные субэлементарные частицы, в том числе фотоны, жёсткое излучение – рентгеновские лучи, «частицы Бога» и прочие. Галактика становится видимой, светящейся. Если она обращена к нам боком, то в центре вокруг оси наблюдается чёрная точка или чёрное пятно – эфир в котором материя не образуется. Она образуется на больших диаметрах. Существует зона или видимый пояс, в котором образуется материя. Далее по мере расширения дискообразной части происходит усложнение материи. Субэлементарные частицы оказываются сдавленными со всех сторон эфиром. Сам эфир между частицами образует параболоиды вращения со статическим давлением меньшим, чем в окружающем их эфире. Наименьшие поперечные сечение параболоидов на средине расстояния между центрами масс этих частиц и определяют силы сдавливания частиц от не скомпенсированного давления на них с противоположных сторон. Под действием сил сдавливания частицы приходят в движение. Частиц великое множество, поэтому результирующие силы от сдавливающих сил оказываются долгое время равными нулю. За сотни миллионов лет это равновесие постепенно нарушается. Некоторые из них слипаются, затормаживая своё движение, другие не успевают пройти мимо и под действием сил сдавливания начинают вращаться вокруг слипшихся более массивных частиц, образую атомы. Затем через миллиарды лет таким же образом образуются молекулы. Материя постепенно усложняется: образуются газовые звёзды, затем звёзды с планетами. На планетах под действием всё тех же сил сдавливания материя становиться более сложной. Образуются: газообразные, жидкие и твёрдые вещества. Затем на отдельных из них появляется растительный и животный мир и, наконец, живые существа наделённые разумом – люди и инопланетяне. Таким образом, в удалённых зонах галактики по мере расширения дискообразной части, материя становится тем сложнее, чем дальше она находится от центра ядра. В самом же ядре статическое давление, по-видимому, всегда оказывается выше критического, поэтому в нём образование материи оказывается невозможным. Гравитация как таковая не существует вовсе. Во Вселенной и, в частности, в галактиках действует закон всемирного сдавливания (выдавливания). Ядро галактики является «чёрной дырой», но она не обладают силами затягивающими материю. Свет, попавший в такую дыру, свободно проникает сквозь неё вопреки заявлениям о том, что это якобы невозможно. Поскольку эфир Вселенной представляет собой неделимую сжимаемую жидкость, то он не обладает температурой. Температуру имеет лишь материя, поскольку она дискретна (состоит из частиц). Поэтому нашумевший Большой взрыв и Теория тепловой вселенной оказываются ошибочными. Поскольку во Вселенной действует Закон всемирного сдавливания (выдавливания), то отсутствует ни чем не объяснимая гравитация как таковая, принимаемая учёными просто – на веру. Поэтому не состоятельной оказывается ОТО – общая теория относительности А. Эйнштейна и все теории основанные на различного рода полей и зарядов. Никаких полей и зарядов попросту нет. Находит простое и понятное объяснение четыре великих взаимодействия. Кроме того притяжение объясняется сдавливанием, а отталкивание – выдавливанием. Относительно зарядов: разноимённые заряды притягиваются (явление – сдавливание), а одноименные отталкиваются (явление – выталкивание). Поэтому ещё целый ряд теорий также становятся не состоятельными. Однако падать в обморок от страха из-за образования «чёрных дыр» в БАК – Большом андронном коллайдере не следует. Ему её никогда не создать, как бы не пыжился его персонал, и какие бы клятвенные заверения не давал. Создавать «частицы Бога» (бозон Гиггса), по-видимому,_ невозможно и не целесообразно. Эти частицы сами в готовом виде прилетают к нам из первой зоны нашей галактики «Млечный путь», а бояться их – тем паче не следует. Бозон атакует Землю уже миллиарды лет и за это время ничего опасного не случилось. Однако чего следует бояться? Опасность есть и очень большая, о которой даже не догадываются те, которые экспериментируют на БАК! В БАК разгоняют до ранее не достижимых около световых скоростей сравнительно тяжёлые частицы. И, если только они по какой-то причине отклонятся от заданной траектории движения и поэтому попадут в детектор или ещё куда-нибудь, то они, обладая большой скоростью и удельной энергией, а её пытаются увеличивать, начнут вышибать электроны из атомов не радиоактивных веществ, провоцирую тем самым ранее неизвестную ядерную реакцию. После чего начнётся самопроизвольное деление ядер практически всех веществ. Причём это будет атомный взрыв не виданной ранее силы. Вот из-за этого и исчезнет: сначала БАК со Швейцарией, затем Европа и весь земной шар. Хотя на этом быть может всё и остановится, но всех нас уже не будет. Это и будет катастрофа космического масштаба. Поэтому пока не поздно надо персоналу БАК проявить смелость и немедленно приостановить эксперименты на БАК до выяснения истинной причины: так это будет или не так? Быть может я, к счастью, ошибаюсь. Хорошо, если бы это было так. Только коллектив учёных может дать правильный ответ на этот вопрос. Колпаков Анатолий Петрович, инженер-механик