Open
Close

Самый бесформенный спутник. Ганимед — самый большой спутник Юпитера. Самая яркая комета

Самая большая планета Солнечной системы

Самой большой планетой Солнечной системы и наиболее массивной из них является Юпитер. Его экваториальный диаметр равен 143884 км, что в 11,209 раз превышает диаметр Земли и составляет 0,103 диаметра Солнца. По объему эквивалентен 1319 объемам Земли. Масса Юпитера в 318 раз превышает массу Земли, и в 2,5 раза больше массы всех остальных планет, вместе взятых. Для того, чтобы образовалась масса, равная массе Солнца, потребуется 1047 таких планет, как Юпитер.

Экваториальный диаметр следующей самой большой планеты, Сатурна, составляет 0,84 диаметра Юпитера, а его масса равна 0,30 массы самой большой планеты. Юпитер, так и Сатурн смогли достичь столь больших размеров потому, что они формировались в ранний период развития Солнечной системы в таком месте, где можно было собрать большое количества газа протопланетной туманности.

Планета с самым большим количеством лун

За последнее десятилетие было открыто много новых лун гигантских планет – Юпитера, Сатурна, Урана и Нептуна. На 1 октября 2004 г. наибольшее количество лун имел Юпитер – 63, за ним шел – 33 луны, затем – 26 и – 13. Вполне вероятно, что у всех четырех планет есть до сих пор не открытые небольшие луны. Происхождение планетарных лун не вполне ясно. Однако кажется вероятным, что большие луны этих гигантских газовых планет сформировались вместе и одновременно с родительскими планетами, а небольшие внешние луны являются астероидами, захваченными позднее.

Самая горячая планета

На Венере температура поверхности составляет от 460 до 480 °C, благодаря чему ее можно считать самой горячей планетой в Солнечной системе. Высокая температура венерианской поверхности связана с наличием у нее плотной атмосферы, состоящей из углекислого газа. Атмосфера выполняет роль теплоизолирующего одеяла. Средняя температура поверхности на 500 градусов выше той, которая была бы при отсутствии атмосферы. Солнечное излучение проникает через облака Венеры, а из-за наличия в атмосфере углекислоты возникает явление, известное как парниковый эффект.

В ранней истории Солнечной системы, когда Солнце было не столь ярким, как сейчас, Венера была холоднее, и, вероятно, на ней были океаны жидкой воды. Вода постепенно испарялась, способствуя возникновению парникового эффекта, но примерно за миллион лет вся она рассеялась в космическом пространстве. По мере повышения температуры из скальных пород на поверхности планеты освобождалось все больше углекислоты, что привело к стремительному развитию парникового эффекта и к наблюдаемому ныне перегреву Венеры.

Самая яркая планета Солнечной системы

Самая яркая планета Солнечной системы – . Ее максимальная звездная величина равна -4,4. Венера ближе всех находится к Земле и, кроме того, эффективно отражает солнечный свет, поскольку поверхность планеты закрыта облаками. Верхние слои облаков Венеры отражают 76% падающего на них солнечного света.

Венера выглядит наиболее яркой, когда находится для земного наблюдателя в фазе серпа. Орбита Венеры лежит ближе к Солнцу, чем орбита Земли, поэтому диск Венеры полностью освещен только тогда, когда она находится на противоположной от Солнца стороне. В это время расстояние до Венеры самое большое, а ее видимый диаметр – самый маленький.

Самая маленькая планета Солнечной системы

Самая маленькая планета Солнечной системы – Плутон. Его диаметр равен всего 2400 км. Период вращения 6.39 суток. Масса в 500 раз меньше земной. Имеет спутник Харон, открытый Дж. Кристи и Р. Харрингтоном в 1978 году. В 2006 году Плутон был признан карликовой планетой.

Самая ветреная планета в Солнечной системе

Самые большие скорости ветра в Солнечной системе были зарегистрированы на Нептуне в экваториальной области планеты. Крупномасштабные атмосферные образования движутся здесь с востока на запад со скоростью около 325 м/сек относительно ядра планеты, а более мелкие перемещаются почти вдвое быстрее. Это означает, что скорости потоков у экватора Нептуна приближаются к сверхзвуковым.

Скорость звука в атмосфере Нептуна составляет примерно 600 м/сек. Сильные ветры наблюдаются на всех гигантских планетах, однако не ясно, почему самое быстрое движение атмосферы отмечается именно на Нептуне. Возможно, это связано с влиянием внутренних источников тепла Нептуна. Вторая среди “самых ветреных” планет – Сатурн, где максимальные скорости ветра примерно вдвое меньше, чем на Нептуне.

Самое холодное место в Солнечной системе

Самая низкая температура, когда-либо зарегистрированная на поверхности тел в Солнечной системе – это температура одной из лун Нептуна, Тритона. По измерениям, сделанным “Вояджером-2”, эта температура оказалась равной –235 °C, что всего на 38 °C выше абсолютного нуля. Температура поверхности Плутона почти наверняка близка к этим значениям, но пока мы имеем только ее оценки, сделанные с поверхности Земли.

По этим оценкам яркие области Плутона имеют температуру около –233 °C, а более темные примерно на 20 °C теплее. Плутон и Тритон кажутся очень похожими друг на друга: степень их подобия намного больше, чем у любой другой пары тел в Солнечной системе. Поверхностная температура планет или лун зависит от нескольких факторов: насколько велико расстояние от Солнца, имеется ли внутренний источник тепла, каково влияние атмосферы. Как Тритон, так и Плутон получают от Солнца очень мало тепла, не имеют внутреннего источника тепла и сильно охлаждаются за счет испарения льда с их поверхности.

Самая большая луна

Самая большая в Солнечной системе луна – спутник Юпитера Ганимед, диаметр которого равен 5262 км. Самая большая луна Сатурна, Титан – по размеру второй (диаметр составляет 5150 км), хотя раньше считалось, что Титан больше Ганимеда. На третьем месте идет соседний с Ганимедом спутник Юпитера Каллисто. Ганимед, так и Каллисто, больше чем планета Меркурий (диаметр которого 4878 км). Ганимед своим статусом “самой большой луны” обязан толстой мантии льда, которая покрывает его внутренние слои, состоящие из скальных пород.

Твердые ядра Ганимеда и Каллисто, вероятно, близки по своим размерам к двум небольшим внутренним галилеевым лунам Юпитера – Ио (3630 км) и Европе (3138 км). Однако из-за близости к Юпитеру они получают больше тепла, так что Ио совсем не имеет ледяной мантии, а у Европы имеется только тонкая корка льда, возможно, со слоем растаявшей подо льдом воды. В отличие от них, Ганимед наполовину состоит изо льда, а наполовину из твердых пород.

Самая маленькая луна

Самая маленькая луна, размеры которой точно известны – спутник Марса . Его форма близка к эллипсоиду с осями 15x12x11 км. Возможный соперник Деймоса – луна Юпитера , диаметр которой оценивается примерно в 10 км. Размеры других небольших лун, вращающихся вокруг внешних планет точно определить трудно, поскольку их можно наблюдать только как точечные объекты. Оценки их размеров зависят от того, какое значение принять для отражательной способности их поверхности.

Диаметры некоторых недавно открытых лун Юпитера и Сатурна оцениваются всего в несколько километров. Считается, что Деймос, как и другой спутник Марса, а также большинство новых лун гигантских планет представляют собой астероиды, захваченные планетами. Оба спутника Марса имеют очень темную поверхность, отражая всего несколько процентов падающего на них света. Эти спутники подобны астероидам, которые обычно находят во внешней части пояса астероидов и в группе троянцев – астероидов, связанных с Юпитером. Возможно, что и Леда представляет собой астероид, захваченный Юпитером и оказавшийся на орбите вокруг него.

Самый высокий вулкан в Солнечной системе

Самые высокие вулканы в Солнечной системе – щитовые вулканы на Марсе. Наибольшую высоту из них имеет гора Олимп. Ее вершина поднимается на 25 км выше уровня окружающего плато, причем поперечник основания составляет почти 550 км. Для сравнения: Гавайские острова на Земле возвышаются над морским дном всего на 10 км. Щитовые вулканы растут в высоту постепенно, в результате повторных извержений из одного и того же жерла. На Марсе щитовые вулканы намного больше, чем на Земле благодаря нескольким причинам.

Хотя в настоящее время эти вулканы, по-видимому, уже не являются действующими, они, вероятно, образовались раньше и были активными намного дольше, чем любые вулканы на Земле. При этом горячие вулканические точки на Земле с течением времени изменяли свое местоположение из-за постепенного движения континентальных плит, так что для “построения” очень высокого вулкана в каждом отдельном случае времени не хватало. Кроме того, низкое тяготение позволяет изверженному веществу образовывать на Марсе намного более высокие структуры, которые не обрушиваются под собственной тяжестью.

Самая наблюдаемая комета

Больше всего возвращений к Земле было отмечено у периодический кометы 2P/Энке. Так как она никогда не удаляется от Солнца дальше чем на 4 астрономические единицы, едва выходя за пределы пояса астероидов, при современных методах наблюдения ее можно наблюдать непрерывно. Комета 2P/Энке находится на необычной орбите – ее период равен всего 3,3 года, что намного меньше, чем у любой другой периодической кометы. Независимые “открытия” этой кометы были сделаны сначала Пьером Мешеном (в 1786 г.) и Каролиной Гершель (в 1795 г.), а затем (в 1805 и 1818 гг.) – Жаном Луи Понсом. Но уже в 1819 г. Иоганн Энке понял, что все эти наблюдения относятся к одной и той же комете, и вычислил ее орбиту. С тех пор до 2005 г. было зарегистрировано 59 прохождения кометы через перигелий. Количество появлений этой кометы в небе можно, например, сравнить с 30 известными возвращениями кометы Галлея с 239 г. до н.э. до 1986 г.

Комета, наблюдавшаяся в течение самого большого периода времени

Комета Галлея (1P) в 1986 г. Наблюдения кометы Галлея, официально известной как комета 1P/Галлея, были прослежены назад вплоть до 239 г. до н. э. Ни для одной другой периодической кометы нет исторических записей, которые могли бы сравниться с кометой Галлея. Комета Галлея уникальна: она наблюдалась на протяжении более двух тысяч лет 30 раз. Это связано с тем, что эта комета намного больше и активнее других периодических комет.

Комета названа по имени Эдмунда Галлея, который в 1705 г. понял связь между несколькими предыдущими появлениями кометы и предсказал ее возвращение в 1758-59 гг. В 1986 г. космический аппарат “Джотто” смог получить изображение ядра кометы Галлея с расстояния всего в 10 тысяч километров. Оказалось, что ее ядро имеет в длину 15 км при ширине 8 км. Кома и хвост этой самой известной кометы образуются при нагревании ядра Солнцем. И выбросы газа и пыли прорываются через темную оболочку, покрывающую ледяное ядро.

Самая яркая комета

На основании сохранившихся записей нельзя судить о том, какая из наблюдавшихся в прошлом комет была самой яркой. Так как яркие кометы представляют собой очень протяженные небесные объекты, точно определить их яркость почти невозможно. Впечатления, получаемые наблюдателем от той или иной кометы, очень субъективны; они зависят от длины хвоста и от того, насколько темным было небо во время наблюдения.

К самым ярким кометам XX столетия относятся так называемая “Великая комета Дневного света” (1910 г.), комета Галлея (при появлении в том же 1910 г.), кометы Шеллерупа-Маристани (1927 г.), Беннетта (1970 г.), Веста (1976 г.), Хейла-Боппа (1997 г.). Самые яркие кометы XIX века, – вероятно, “Большие кометы” 1811, 1861 и 1882 гг. Ранее очень яркие кометы были зарегистрированы в 1743, 1577, 1471 и 1402 гг. Самое близкое к нам (и наиболее яркое) появление кометы Галлея было отмечено в 837 г.

Самый близкий подход кометы к Земле

Среди зарегистрированных сближений комет наиболее близко к Земле подходила комета Лекселя в 1770 г. Наименьшее расстояние до Земли было достигнуто 1 июля 1770 г. и составило 0,015 астрономических единицы (т.е. 2,244 миллиона километров). Это в шесть раз превышает расстояние до Луны. Когда комета находилась ближе всего, видимый размер ее комы был равен почти пяти диаметрам полной Луны.

Комета была открыта Шарлем Мессье 14 июня 1770 г., но свое название получила по имени Андерса Иоганна (Андрея Ивановича) Лекселя, который определил орбиту кометы и результаты своих вычислений в 1772 и 1779 гг. Он обнаружил, что в 1767 г. комета близко подошла к Юпитеру и под его гравитационным воздействием перешла на орбиту, которая проходила вблизи Земли. Однако при следующем, еще более близком подходе к Юпитеру, возмущение траектории кометы Лекселя оказалось настолько большим, что с Земли она больше не наблюдалась.

Самый большой астероид

Седна (2003 VB 12) является наиболее крупным и дальним астероидом Солнечной системы. Он немного меньше, чем Плутон, и его диаметр оценивается в 1700 км.

Орбита Седны очень вытянута, в настоящее время астероид находится на расстоянии около 90 а.е. от Солнца. Седна является потенциальным членом облака Оорта.


Из всех спутников Солнечной системы можно выделить несколько самых необычных. Все они имеют некоторые интересные особенности, о которых пойдет речь ниже.

Ганимед - самый крупный спутник

Спутник Юпитера Ганимед сам по себе очень напоминает Луну, но он гораздо больше и является самым крупным спутником всей солнечной системы. Еще одна его особенность - наличие магнитных полюсов. Ганимед немного крупнее Меркурия и немножко меньше Марса, его можно было бы принять за планету, если бы он также вращался бы вокруг Солнца.

Ганимед

Миранда - не самый привлекательный спутник

Спутники Урана не отличаются презентабельностью. Очень выделяется из всех этих спутников спутник под названием Миранда. Название у него красивое, а вот внешний вид не очень. Однако если рассмотреть поверхность Миранды повнимательнее, там обнаруживается наиболее разнообразный ландшафт в Солнечной системе: гигантские хребты чередуются с глубокими равнинами, а некоторые каньоны в 12 раз глубже знаменитого Гран-Каньона!

Миранда

Каллисто – чемпион по кратерам

Спутник Юпитера Калисто сразу представляется мертвой планетой, которая не имеет никаких признаков жизни. Очень много метеоритов падало на данный спутник и, соответственно, все они оставили после себя следы, которые теперь представлены в виде кратеров на спутнике. Это и является главной отличительной особенностью Калисто. На нем расположено самое большое количество кратеров из всех планет и спутников Солнечной системы.

Каллисто (внизу и слева), Юпитер (наверху и справа) и Европа (ниже и левее Большого Красного Пятна)

Дактиль – спутник астероида

Дактиль - это спутник, главной отличительной особенностью которого является то, что он самый маленький из всех спутников солнечной системы. Его длина всего лишь 1,6 км, но он вращается вокруг астероида. Дактиль - это спутник Иды. Согласно древне-греческому мифу, Идой называлась гора, в которой проживали крошечные существа - дактили.

Астероид Ида и его спутник Дактиль

Эпиметей и Янус – вечная гонка

Два спутника Сатурна в далеком прошлом были одним целым, но после раскола они стали двигаться почти по одной орбите, каждые четыре года меняясь местами и чудом избегая столкновения.

Эпиметей и Янус

Энцелад-кольценосец

Энцелад является одним из самых крупных спутников Сатурна. На него падает и отражается почти весь солнечный свет, в следствии чего его считают самым рефлектирующим объектом Солнечной системы. На Энцеладе имеются гейзеры, выбрасывающие водяной пар и пыль в открытый космос. Ученые считают, что именно по причине вулканической деятельности своего спутника Сатурн обзавелся кольцом Е, через которое пролежит орбита Энцелада.

Кольцо Е и Энцелад

Тритон - спутник с уникальными вулканами

Тритон самый большой спутник Нептуна. Отличается этот спутник от других тем, что он вращается вокруг планеты в направлении обратном ее вращению вокруг Солнца. Тритон имеет большое количество вулканов, которые выбрасывают не лаву, воду и аммиак, которые мгновенно после этого замерзают.

Тритон

Европа – спутник-океан

Европа - это спутник Юпитера, который имеет самую ровную поверхность. Это особенность связана тем, что Европа вся покрыта океаном, а на его поверхности есть тонкий слой льда. Подо льдом имеется огромнейшее количество жидкости - в несколько раз больше, чем на Земле. Некоторые исследователи, которые занимаются изучение данного спутника пришли к выводу, что в океане Европы может быть жизнь.

Европа

Ио – вулканический ад

На спутнике Юпитера Ио постоянно происходит вулканическая активность. Это связано с самой природой планеты Юпитер, в следствии чего недра спутника подвержены нагреву. На поверхности имеется более 400 вулканов, причем вулканообразование происходит непрерывно, их с легкостью можно заметить, пролетая мимо. Но по этой же причине на поверхности Ио практически не заметны кратеры, поскольку их заполняет лава, которая извергается из вулканов.

Tитан – лучший кандидат на колонизацию

Спутник Сатурна Титан является самым непредсказуемым и уникальным спутником. Давно доказано, что он имеет более плотную атмосферу, чем на Земле. В составе которой имеется азот, метан и другие газы. Долгое время было неизвестно, что же скрывается под этими густыми облаками спутника, и только после того как аппарат сделал снимки, стало ясно, что там расположены реки и озера метоновой и титановой природы. Предполагается, что на Титане также имеются подземные водоемы, что вкупе с низкой гравитацией делает его лучшим кандидатом на колонизацию землянами.

Верхние слои атмосферы Титана и южный полюс Сатурна

Есть веские причины считать, что люди не только смогут выжить на Европе, спутнике Юпитера, но и найдут там уже существующую жизнь. Европа покрыта толстой ледяной коркой, однако многие ученые склонны считать, что под ней находится настоящий океан из жидкой воды. Кроме того, наличие твердого внутреннего ядра у Европы добавляет шансов на наличие правильной среды для поддержки жизни, будь то обычных микробов или, возможно, даже более сложных организмов.

Изучать Европу на предмет наличия условий для существования жизни и самой жизни определенно стоит. Как-никак это многократно увеличит шансы возможной колонизации этого мира. NASA хочет проверить, имеет ли вода Европы какую-то связь с ядром планеты и производится ли в результате этой реакции тепло и водород, как у нас на Земле. В свою очередь, исследование различных окислителей, которые могут присутствовать в ледяной корке планеты, укажет на уровень производимого кислорода, а также то, сколько его находится ближе к океанскому дну.

Есть предпосылки считать, что NASA займется плотным изучением Европы и попытками туда полететь где-то к 2025 году. Именно тогда мы и узнаем, верны ли те теории, которые связывают с этим ледяным спутником. Изучение на месте также может показать наличие активных вулканов под ледяной поверхностью, что, в свою очередь, тоже повысит шансы жизни на этом спутнике. Ведь благодаря этим вулканам в океане могут накапливаться важнейшие минералы.

Титан

Несмотря на то, что Титан, один из спутников Сатурна, находится во внешней границе Солнечной системы, этот мир является одним из наиболее интересных мест для человечества и, возможно, одним из кандидатов на будущую колонизацию.

Конечно же, для дыхания здесь потребуется использование специального оборудования (атмосфера непригодна для нас), однако необходимости в использовании специальных скафандров с регулируемым давлением здесь нет. Однако носить специальную защитную одежду, конечно, все же придется, так как здесь очень низкая температура, нередко опускающаяся до -179 градусов Цельсия. Сила гравитации на этом спутнике чуть ниже уровня гравитации на Луне, а значит ходить по поверхности будет относительно легко.

Придется, правда, серьезно подумать над тем, как выращивать урожай, и озаботиться вопросами искусственного освещения, так как солнечного света на Титан попадает всего от 1/300 до 1/1000 от земного уровня. Во всем виноваты плотные облака, которые, тем не менее, защищают спутник от чрезмерных уровней излучения.

На Титане нет воды, но есть целые океаны из жидкого метана. В связи с этим, некоторые ученые продолжают спорить над тем, могла бы ли в таких условиях образоваться жизнь. Как бы там ни было, на Титане есть что исследовать. Здесь имеется бесчисленное количество метановых рек и озер, большие горы. Кроме того, здесь должны быть просто потрясающие виды. Ввиду относительной близости Титана к Сатурну, планета на небе спутника (в зависимости от облачности) занимает до одной трети небосклона.

Миранда

Несмотря на то, что крупнейшим спутником Урана является Титания, Миранда, самая маленькая из пяти лун планеты, наиболее подходит для колонизации. На Миранде есть несколько очень глубоких каньонов, глубже, чем Большой каньон на Земле. Эти места могут стать идеальным местом для посадки и установки базы, которая будет защищена от внешнего воздействия суровой среды и особенно от радиоактивных частиц, производимых магнитосферой самого Урана.

На Миранде есть лед. Астрономы и исследователи подсчитали, что он составляет примерно половину состава этого спутника. Как и на Европе, есть вероятность наличия воды на спутнике, которая скрыта под ледяной шапкой. Наверняка это неизвестно, и мы этого не узнаем, пока не подберемся ближе к Миранде. Если на Миранде все же есть вода, то это говорило бы о серьезной геологической активности на спутнике, так как он находится слишком далеко от Солнца и солнечный свет не состоянии поддерживать здесь воду в жидкой форме. Геологическая активность, в свою очередь, все это бы объяснила. Несмотря на то, что это всего лишь теория (и, скорее всего, маловероятная), близкое расположение Миранды к Урану и его приливным силам может вызывать эту самую геологическую активность.

Есть ли здесь вода в жидкой форме или нет, но если мы установим на Миранде колонию, то очень низкая гравитация спутника позволит спуститься в глубокие каньоны без фатальных последствий. В общем, здесь тоже будет чем заняться и что исследовать.

Энцелад

Согласно некоторым исследователям, Энцелад, один из спутников Сатурна, может не только стать отличным местом для колонизации и наблюдения за планетой, но и является чуть ли не самым вероятным местом, которое уже поддерживает жизнь.

Энцелад покрыт льдом, однако наблюдения зондами с космоса показали геологическую активность на луне и в частности вырывающиеся с ее поверхности гейзеры. Космический аппарат «Кассини» собрал образцы и определил наличие жидкой воды, азота и органического углерода. Эти элементы, а также тот источник энергии, который выбросил их в космос, являются важными «кирпичиками жизни». Поэтому следующим шагом для ученых будет обнаружение признаков более сложных элементов и, возможно, организмов, которые могут скрываться под ледяной поверхностью Энцелада.

Исследователи считают, что лучшим местом для установки колонии будут зоны, рядом с которыми были замечены эти гейзеры, — огромные разломы на поверхности ледяной шапки южного полюса. Здесь замечена весьма необычная тепловая активность, эквивалентная работе примерно 20 угольных электростанций. Другими словами, для будущих колонистов здесь имеется подходящий источник тепла.

На Энцеладе имеется множество кратеров и разломов, только и ждущих, когда их начнут изучать. К сожалению, атмосфера спутника очень разряжена, а низкая гравитация может создать некоторые проблемы в освоении этого мира.

Харон

Космический аппарат NASA «Новые горизонты» после встречи с Плутоном отправил на Землю потрясающие изображения карликовой планеты и ее крупнейшего спутника Харона. Эти изображения вызвали жаркие споры в научном сообществе, которое теперь пытается определить: геологически активен или нет этот спутник. Оказалось, что поверхность Харона (как и Плутона) гораздо моложе, чем предполагалось ранее.

Несмотря на то, что в поверхности Харона имеются трещины, кажется, эта луна весьма эффективно избегает столкновения с астероидами, так как на ней очень мало ударных кратеров. Сами трещины и разломы очень похожи на те, которые остаются от течения раскаленной лавы. Такие же трещины были найдены на Луне и являются идеальным местом для установки колонии.

Считается, что Харон обладает очень разряженной атмосферой, что также может являться индикатором геологической активности.

Мимас

Мимас нередко называют «Звездой смерти». Вполне возможно, что под ледяной шапкой этого спутника может скрываться океан. И несмотря на общий зловещий вид этой луны, она, вероятно, действительно может подходить для поддержания жизни. Наблюдения космического зонда «Кассини» показали, что Мимас слегка раскачивается на своей орбите, что могло бы говорить о геологической активности под его поверхностью.

И хотя ученые очень осторожны в своих предположениях, других следов, которые указывали бы на геологическую активность спутника, обнаружено не было. Если на Мимасе будет обнаружен океан, то эта луна одной из первых должна быть рассмотрена в качестве наиболее подходящего кандидата для установки здесь колонии. Приблизительные расчеты указывают на то, что океан может скрываться на глубине около 24-29 километров под поверхностью.

Если необычное орбитальное поведение никак не связано с наличием жидкой воды под поверхностью этого спутника, тогда, вероятнее всего, все дело в его деформированном ядре. И винить в этом стоит сильный гравитационный пул колец Сатурна. Как бы там ни было, наиболее очевидным и самым надежным способом узнать, что же здесь происходит, является посадка на поверхность и проведение нужных замеров.

Тритон

Изображения и данные, полученные с космического аппарата «Вояджер-2» в августе 1989 года, показали, что поверхность крупнейшего спутника Нептуна, Тритона, состоит из камней и азотного льда. Кроме того, данные намекнули на то, что под поверхностью спутника может находиться жидкая вода.

Хотя Тритон обладает атмосферой, она настолько разряжена, что на поверхности спутника от нее нет никакого толка. Находиться здесь без особо защищенного скафандра — смерти подобно. Средняя температура на поверхности Тритона составляет -235 градусов Цельсия, что делает эту луну самым холодным космическим объектом в известной Вселенной.

Тем не менее для ученых Тритон очень интересен. И однажды они хотели бы туда добраться, установить базу и провести все необходимые научные наблюдения и исследования:

«Некоторые зоны поверхности Тритона отражают свет, как будто сделаны из чего-то твердого и гладкого, как металл. Считается, что данные зоны содержат пыль, азотный газ и, возможно, воду, которая просачивается сквозь поверхность и мгновенно замерзает в результате невероятно низкой температуры».

Кроме того, ученые подсчитали, что Тритон образовался примерно в то же время и из того же материала, что и Нептун, что весьма странно, учитывая размер спутника. Похоже, он сформировался где-то в другом уголке Солнечной системы, а затем был притянут гравитацией Нептуна. Более того, спутник вращается в противоположную своей планете сторону. Тритон — единственный спутник Солнечной системы, который обладает такой особенностью.

Ганимед

В отношении крупнейшего спутника Юпитера, Ганимеда, как и других космических объектов в нашей Солнечной системе, были выражены подозрения в наличие воды под поверхностью. По сравнению с другими покрытыми льдом спутниками, поверхность Ганимеда принято считать относительно тонкой и легкой для бурения.

Кроме того, Ганимед является единственным спутником в Солнечной системе, обладающим собственным магнитным полем. Благодаря этому над его полярными областями можно очень часто наблюдать северные сияния. Помимо этого, есть подозрения, что под поверхностью Ганимеда может скрываться жидкий океан. Спутник обладает разряженной атмосферой, в состав которой входит кислород. И хотя его крайне мало для поддержания той жизни, которую мы знаем, потенциал для терраформирования у спутника имеется.

В 2012 году запланировало космическую миссию к Ганимеду, а также двум другим спутникам Юпитера — Каллисто и Европе. Запуск собираются осуществить в 2022 году. Добраться до Ганимеда удастся 10 годами позже. Хотя все три спутника представляют большой интерес для ученых, считается, что Ганимед содержит наибольшее число интересных науке особенностей и потенциально пригоден для колонизации.

Каллисто

Размером примерно с планету Меркурий, вторым по размеру спутником Юпитера является Каллисто — еще одна луна, в отношении которой выражены предположения о содержании воды под ледяной поверхностью. Кроме того, спутник рассматривается как подходящий кандидат для будущей колонизации.

Поверхность Каллисто в основном состоит из кратеров и ледяных полей. Атмосфера спутника представляет собой смесь углекислого газа. Ученые уже выдвигают предположения о том, что весьма разряженная атмосфера спутника пополняется углекислым газом, вырывающимся из-под поверхности. Ранее полученные данные указывали на возможность наличия кислорода в атмосфере, однако дальнейшие наблюдения эту информацию не подтвердили.

Так как Каллисто находится на безопасной дистанции от Юпитера, излучение от планеты будет относительно низким. А отсутствие геологической активности делает среду спутника более стабильной для потенциальных колонистов. Другими словами, построить колонию здесь можно и на поверхности, а не под ней, как во многих случаях с другими спутниками.

Луна

Вот мы и подобрались к первой потенциальной колонии, которую установит человечество за пределами своей планеты. Речь, конечно же, идет о нашей Луне. Многие ученые склонны считать, что колония на нашем естественном спутнике появится уже в ближайшее десятилетие и вскоре после этого Луна станет отправной точкой для более дальних космических миссий.

Крис Маккей, астробиолог NASA, является одним из тех, кто считает, что Луна является наиболее вероятным местом для первой космической колонии людей. Маккей уверен в том, что дальнейшее освоение Луны с космической миссией после «Аполлон-17» не продолжилось исключительно из соображения стоимости этой программы. Однако нынешние технологии, разработанные для использования на Земле, также могут быть очень экономически выгодными и для использования в космосе и существенно удешевят как стоимость самих запусков, так и строительство на поверхности Луны.

Несмотря на то, что сейчас самой большой миссией для NASA является высадка человека на Марсе, Маккей уверен, что осуществить этот план удастся не раньше того момента, как на Луне появится первая лунная база, которая станет отправной точкой для дальнейших миссий к Красной планете. Не только многие государства, но и многие частные компании проявляют интерес к колонизации Луны и даже готовят соответствующие планы.

Некоторые из этих лун до сих пор остаются загадкой для астрономов, ведь не везде еще ступала нога человека, а где-то вполне возможно существование живых организмов! Но что мы точно знаем, это хотя бы их размеры. В этом списке вы познакомитесь с 10 самыми крупными планетарными спутниками в нашей солнечной системе.

10. Оберон, спутник Урана (средний диаметр – 1523 километра)

Оберон, также известный под названием Уран IV, - самый удаленный от центра Урана сателлит, второй по размеру среди прочих спутников этой планеты и девятый по массе среди всех известных спутников нашей солнечной системы. Открытый в 1787 году исследователем Вильямом Хершелем (William Herschel), Оберон назван в честь мифического царя эльфов и фей, упоминаемых в произведении Шекспира «Сон в летнюю ночь». Орбита Оберона частично лежит за пределами магнитосферы Урана.

9. Рея, спутник Сатурна (средний диаметр – 1529 километров)

Рея – второй по величине спутник Сатурна и девятый по размеру сателлит во всей Солнечной системе. В то же самое время это второе самое маленькое космическое тело в нашей солнечной системе, уступая в этом рейтинге только астероиду и карликовой планете Церера. Этот статус Рея получила за подтвержденные данные о том, что обладает гидростатическим равновесием. Открыл в 1672 году Джованни Кассини.

8. Титания, спутник Урана (средний диаметр – 1578 километров)

Это крупнейшая луна Урана и восьмая по размеру в Солнечной системе. Открытая в 1787 году Вильямом Хершелем, Титания была названа в честь богини фей из комедии Шекспира «Сон в летнюю ночь». Орбита Титании не выходит за пределы магнитосферы Урана.

7. Тритон, спутник Нептуна (средний диаметр – 2707 километров)

Тритон – самый крупный спутник планеты Нептун, открытый 10 октября 1846 года английским астрономом Вильямом Ласселлом (William Lassell). В нашей солнечной системе это единственная большая луна с ретроградной орбитой. Тритон движется в направлении, обратном вращению своей планеты. За свои 2707 километров диаметра Тритон считается седьмым по размерам спутником в Солнечной системе. Было время, когда Тритон считали планетой-карликом из астероидного пояса Койпера за схожие с Плутоном свойства - ретроградность и композицию.

6. Европа, спутник Юпитера (средний диаметр – 3122 километра)

Это самый маленький из галилеевых спутников, вращающихся вокруг Юпитера, и шестой по близости расположения к своей планете. Это также шестой по размеру сателлит в Солнечной системе. Галилео Галилей открыл Европу в 1610 году и назвал это небесное тело в честь легендарной матери критского Короля Миноса и любовницы Зевса.

5. Луна, спутник Земли (средний диаметр – 3475 километров)

Считается, что наша Луна сформировалась 4,5 миллиарда лет тому назад вскоре после образования самой Земли. Существует несколько гипотез о ее происхождении. Самая распространенная среди них гласит, что Луна образовалась из осколков после столкновения Земли с космическим телом Тея, по размеру сравнимым с Марсом.

4. Ио, спутник Юпитера (средний диаметр – 3643 километра)

Ио – самый геологически активный небесный объект в нашей солнечной системе, и заслужил это звание за, как минимум, 400 действующих вулканов. Причиной такой чрезвычайной активности является нагрев недр спутника вследствие приливного трения, вызываемого гравитационным воздействием Юпитера и остальных галилейских спутников (Европа, Ганимед и Каллисто).

3. Каллисто, спутник Юпитера (средний диаметр – 4821 километр)

Галилео Галилей открыл Каллисто, как и некоторые другие спутники Юпитера, в 1610 году. Обладая внушительными размерами, этот сателлит составляет 99% диаметра Меркурия, но при этом лишь треть его массы. Каллисто - четвертый галилеевский спутник Юпитера по удаленности от центра планеты, обладающий орбитальным радиусом в 1883000 километров.

2. Титан, спутник Сатурна (средний диаметр – 5150 километров)

Это шестой эллипсоидный сателлит Сатурна. Очень часто его называют планетоподобным спутником, ведь диаметр Титана на 50% больше, чем диаметр нашей Луны. Кроме того он на 80% тяжелее спутника нашей Земли.

1. Ганимед, спутник Юпитера (средний диаметр – 5262 километра)

Ганимед в равной степени состоит из силикатных пород и заледеневшей воды. Это в полной мере дифференцированное небесное тело, богатое на железо, с жидким ядром и внешним океаном, в котором может быть больше воды, чем по всей Земле в сумме всех ее океанов. Поверхность Ганимеда отличается двумя типами рельефа. Темные регионы сателлита насыщенны кратерами от столкновений с астероидами, произошедших предположительно 4 миллиарда лет тому назад. Эта форма рельефа покрывает примерно треть спутника.